{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Variable Types and Continuous Probability\n", "\n", "In the previous lesson, we looked at _discrete_, and particularly _categorical_, probablity distributions. In this lesson, we're going to talk about more types of variables, and continuous probability distributions.\n", "\n", "Let's grab that NYC data again." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading tidyverse: ggplot2\n", "Loading tidyverse: tibble\n", "Loading tidyverse: tidyr\n", "Loading tidyverse: readr\n", "Loading tidyverse: purrr\n", "Loading tidyverse: dplyr\n", "Conflicts with tidy packages ---------------------------------------------------\n", "filter(): dplyr, stats\n", "lag(): dplyr, stats\n" ] } ], "source": [ "library(tidyverse)\n", "library(nycflights13)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "options(repr.matrix.max.rows=20, repr.plot.height=4.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Types of Variables\n", "\n", "We can categorize random variables (or observations, or parameters) into four types:\n", "\n", "1. **Categorical** variables take on distinct values with no relationship between different values. Origin airport and airline from the previous example are both categorical variables.\n", "2. **Ordinal** variables take on distinct, _ordered_ values. For example, if we describe rain intensity as ‘none’, ‘light’, ‘moderate’, and ‘heavy’, that is ordinal: the values are distinct, but are ordered in increasing amounts of rainfall. Likert-style survey responses (‘disagree’, ‘agree’, ‘strongly agree’) are a common kind of ordinal data.\n", "3. **Cardinal** variables take on distinct ordered values that support basic math (particularly subtraction). The most common example is integers, commonly expressing counts: if we count the number of airplanes, we can compare two counts by subtracting them; we can't, however, say anything numeric about the difference between ‘moderate’ and ‘light’ rainfall.\n", "4. **Continuous** variables have values that are real numbers - there are infinitely many possible values, even if the range is limited, and for any two different values observed, it would be possible to have a value between them; further, they support all of our usual mathematical operations. But thinking of these as real numbers is the right thing to do. Non-count measurements are typically continuous.\n", "\n", "Types 1–3 are all types of **discrete** values: they take on distinct values. Type 4 is just **continuous**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Continuous Variables\n", "\n", "In the previous demo, we counted up the number of flights by a particular airline, or from a particular airport, to estimate probabilities.\n", "\n", "The NYC data also includes weather for each of the airports. Let's look at that data:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
originyearmonthdayhourtempdewphumidwind_dirwind_speedwind_gustprecippressurevisibtime_hour
EWR 2013 1 1 0 37.04 21.92 53.97 230 10.35702 11.91865 0 1013.9 10 2013-01-01 01:00:00
EWR 2013 1 1 1 37.04 21.92 53.97 230 13.80936 15.89154 0 1013.0 10 2013-01-01 02:00:00
EWR 2013 1 1 2 37.94 21.92 52.09 230 12.65858 14.56724 0 1012.6 10 2013-01-01 03:00:00
EWR 2013 1 1 3 37.94 23.00 54.51 230 13.80936 15.89154 0 1012.7 10 2013-01-01 04:00:00
EWR 2013 1 1 4 37.94 24.08 57.04 240 14.96014 17.21583 0 1012.8 10 2013-01-01 05:00:00
EWR 2013 1 1 6 39.02 26.06 59.37 270 10.35702 11.91865 0 1012.0 10 2013-01-01 07:00:00
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllllllll}\n", " origin & year & month & day & hour & temp & dewp & humid & wind\\_dir & wind\\_speed & wind\\_gust & precip & pressure & visib & time\\_hour\\\\\n", "\\hline\n", "\t EWR & 2013 & 1 & 1 & 0 & 37.04 & 21.92 & 53.97 & 230 & 10.35702 & 11.91865 & 0 & 1013.9 & 10 & 2013-01-01 01:00:00\\\\\n", "\t EWR & 2013 & 1 & 1 & 1 & 37.04 & 21.92 & 53.97 & 230 & 13.80936 & 15.89154 & 0 & 1013.0 & 10 & 2013-01-01 02:00:00\\\\\n", "\t EWR & 2013 & 1 & 1 & 2 & 37.94 & 21.92 & 52.09 & 230 & 12.65858 & 14.56724 & 0 & 1012.6 & 10 & 2013-01-01 03:00:00\\\\\n", "\t EWR & 2013 & 1 & 1 & 3 & 37.94 & 23.00 & 54.51 & 230 & 13.80936 & 15.89154 & 0 & 1012.7 & 10 & 2013-01-01 04:00:00\\\\\n", "\t EWR & 2013 & 1 & 1 & 4 & 37.94 & 24.08 & 57.04 & 240 & 14.96014 & 17.21583 & 0 & 1012.8 & 10 & 2013-01-01 05:00:00\\\\\n", "\t EWR & 2013 & 1 & 1 & 6 & 39.02 & 26.06 & 59.37 & 270 & 10.35702 & 11.91865 & 0 & 1012.0 & 10 & 2013-01-01 07:00:00\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "origin | year | month | day | hour | temp | dewp | humid | wind_dir | wind_speed | wind_gust | precip | pressure | visib | time_hour | \n", "|---|---|---|---|---|---|\n", "| EWR | 2013 | 1 | 1 | 0 | 37.04 | 21.92 | 53.97 | 230 | 10.35702 | 11.91865 | 0 | 1013.9 | 10 | 2013-01-01 01:00:00 | \n", "| EWR | 2013 | 1 | 1 | 1 | 37.04 | 21.92 | 53.97 | 230 | 13.80936 | 15.89154 | 0 | 1013.0 | 10 | 2013-01-01 02:00:00 | \n", "| EWR | 2013 | 1 | 1 | 2 | 37.94 | 21.92 | 52.09 | 230 | 12.65858 | 14.56724 | 0 | 1012.6 | 10 | 2013-01-01 03:00:00 | \n", "| EWR | 2013 | 1 | 1 | 3 | 37.94 | 23.00 | 54.51 | 230 | 13.80936 | 15.89154 | 0 | 1012.7 | 10 | 2013-01-01 04:00:00 | \n", "| EWR | 2013 | 1 | 1 | 4 | 37.94 | 24.08 | 57.04 | 240 | 14.96014 | 17.21583 | 0 | 1012.8 | 10 | 2013-01-01 05:00:00 | \n", "| EWR | 2013 | 1 | 1 | 6 | 39.02 | 26.06 | 59.37 | 270 | 10.35702 | 11.91865 | 0 | 1012.0 | 10 | 2013-01-01 07:00:00 | \n", "\n", "\n" ], "text/plain": [ " origin year month day hour temp dewp humid wind_dir wind_speed wind_gust\n", "1 EWR 2013 1 1 0 37.04 21.92 53.97 230 10.35702 11.91865 \n", "2 EWR 2013 1 1 1 37.04 21.92 53.97 230 13.80936 15.89154 \n", "3 EWR 2013 1 1 2 37.94 21.92 52.09 230 12.65858 14.56724 \n", "4 EWR 2013 1 1 3 37.94 23.00 54.51 230 13.80936 15.89154 \n", "5 EWR 2013 1 1 4 37.94 24.08 57.04 240 14.96014 17.21583 \n", "6 EWR 2013 1 1 6 39.02 26.06 59.37 270 10.35702 11.91865 \n", " precip pressure visib time_hour \n", "1 0 1013.9 10 2013-01-01 01:00:00\n", "2 0 1013.0 10 2013-01-01 02:00:00\n", "3 0 1012.6 10 2013-01-01 03:00:00\n", "4 0 1012.7 10 2013-01-01 04:00:00\n", "5 0 1012.8 10 2013-01-01 05:00:00\n", "6 0 1012.0 10 2013-01-01 07:00:00" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(weather)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Dealing with weather by the hour seems a little obnoxious; let's bin it by day." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
originyearmonthdayavg_tempmax_tempmin_tempavg_windmax_windprecip
EWR 2013 1 1 38.4800 41.00 33.98 12.75864818.54012 0
EWR 2013 1 2 28.8350 33.98 24.08 12.51473221.18871 0
EWR 2013 1 3 29.4575 33.98 26.06 7.86366313.24295 0
EWR 2013 1 4 33.4775 39.92 28.94 13.85730927.81019 0
EWR 2013 1 5 36.7325 44.06 32.00 10.83651221.18871 0
EWR 2013 1 6 37.9700 48.02 32.00 8.00751117.21583 0
\n" ], "text/latex": [ "\\begin{tabular}{r|llllllllll}\n", " origin & year & month & day & avg\\_temp & max\\_temp & min\\_temp & avg\\_wind & max\\_wind & precip\\\\\n", "\\hline\n", "\t EWR & 2013 & 1 & 1 & 38.4800 & 41.00 & 33.98 & 12.758648 & 18.54012 & 0 \\\\\n", "\t EWR & 2013 & 1 & 2 & 28.8350 & 33.98 & 24.08 & 12.514732 & 21.18871 & 0 \\\\\n", "\t EWR & 2013 & 1 & 3 & 29.4575 & 33.98 & 26.06 & 7.863663 & 13.24295 & 0 \\\\\n", "\t EWR & 2013 & 1 & 4 & 33.4775 & 39.92 & 28.94 & 13.857309 & 27.81019 & 0 \\\\\n", "\t EWR & 2013 & 1 & 5 & 36.7325 & 44.06 & 32.00 & 10.836512 & 21.18871 & 0 \\\\\n", "\t EWR & 2013 & 1 & 6 & 37.9700 & 48.02 & 32.00 & 8.007511 & 17.21583 & 0 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "origin | year | month | day | avg_temp | max_temp | min_temp | avg_wind | max_wind | precip | \n", "|---|---|---|---|---|---|\n", "| EWR | 2013 | 1 | 1 | 38.4800 | 41.00 | 33.98 | 12.758648 | 18.54012 | 0 | \n", "| EWR | 2013 | 1 | 2 | 28.8350 | 33.98 | 24.08 | 12.514732 | 21.18871 | 0 | \n", "| EWR | 2013 | 1 | 3 | 29.4575 | 33.98 | 26.06 | 7.863663 | 13.24295 | 0 | \n", "| EWR | 2013 | 1 | 4 | 33.4775 | 39.92 | 28.94 | 13.857309 | 27.81019 | 0 | \n", "| EWR | 2013 | 1 | 5 | 36.7325 | 44.06 | 32.00 | 10.836512 | 21.18871 | 0 | \n", "| EWR | 2013 | 1 | 6 | 37.9700 | 48.02 | 32.00 | 8.007511 | 17.21583 | 0 | \n", "\n", "\n" ], "text/plain": [ " origin year month day avg_temp max_temp min_temp avg_wind max_wind precip\n", "1 EWR 2013 1 1 38.4800 41.00 33.98 12.758648 18.54012 0 \n", "2 EWR 2013 1 2 28.8350 33.98 24.08 12.514732 21.18871 0 \n", "3 EWR 2013 1 3 29.4575 33.98 26.06 7.863663 13.24295 0 \n", "4 EWR 2013 1 4 33.4775 39.92 28.94 13.857309 27.81019 0 \n", "5 EWR 2013 1 5 36.7325 44.06 32.00 10.836512 21.18871 0 \n", "6 EWR 2013 1 6 37.9700 48.02 32.00 8.007511 17.21583 0 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "day_weather = weather %>%\n", " group_by(origin, year, month, day) %>%\n", " summarize(avg_temp=mean(temp, na.rm=TRUE), max_temp=max(temp), min_temp=min(temp),\n", " avg_wind=mean(wind_speed), max_wind=max(wind_gust),\n", " precip=sum(precip))\n", "head(day_weather)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's try to count up average temperatures:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
avg_tempndaysprob
15.49250 1 0.002747253
17.67500 1 0.002747253
17.84750 1 0.002747253
20.11250 1 0.002747253
23.27000 1 0.002747253
24.62750 1 0.002747253
25.07750 1 0.002747253
25.14435 1 0.002747253
25.42250 1 0.002747253
25.46750 1 0.002747253
.........
83.5550 1 0.002747253
83.9450 1 0.002747253
84.2675 1 0.002747253
86.3300 1 0.002747253
86.9900 1 0.002747253
87.3725 1 0.002747253
87.5525 1 0.002747253
87.5825 2 0.005494505
89.5175 1 0.002747253
91.1675 1 0.002747253
\n" ], "text/latex": [ "\\begin{tabular}{r|lll}\n", " avg\\_temp & ndays & prob\\\\\n", "\\hline\n", "\t 15.49250 & 1 & 0.002747253\\\\\n", "\t 17.67500 & 1 & 0.002747253\\\\\n", "\t 17.84750 & 1 & 0.002747253\\\\\n", "\t 20.11250 & 1 & 0.002747253\\\\\n", "\t 23.27000 & 1 & 0.002747253\\\\\n", "\t 24.62750 & 1 & 0.002747253\\\\\n", "\t 25.07750 & 1 & 0.002747253\\\\\n", "\t 25.14435 & 1 & 0.002747253\\\\\n", "\t 25.42250 & 1 & 0.002747253\\\\\n", "\t 25.46750 & 1 & 0.002747253\\\\\n", "\t ... & ... & ...\\\\\n", "\t 83.5550 & 1 & 0.002747253\\\\\n", "\t 83.9450 & 1 & 0.002747253\\\\\n", "\t 84.2675 & 1 & 0.002747253\\\\\n", "\t 86.3300 & 1 & 0.002747253\\\\\n", "\t 86.9900 & 1 & 0.002747253\\\\\n", "\t 87.3725 & 1 & 0.002747253\\\\\n", "\t 87.5525 & 1 & 0.002747253\\\\\n", "\t 87.5825 & 2 & 0.005494505\\\\\n", "\t 89.5175 & 1 & 0.002747253\\\\\n", "\t 91.1675 & 1 & 0.002747253\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "avg_temp | ndays | prob | \n", "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", "| 15.49250 | 1 | 0.002747253 | \n", "| 17.67500 | 1 | 0.002747253 | \n", "| 17.84750 | 1 | 0.002747253 | \n", "| 20.11250 | 1 | 0.002747253 | \n", "| 23.27000 | 1 | 0.002747253 | \n", "| 24.62750 | 1 | 0.002747253 | \n", "| 25.07750 | 1 | 0.002747253 | \n", "| 25.14435 | 1 | 0.002747253 | \n", "| 25.42250 | 1 | 0.002747253 | \n", "| 25.46750 | 1 | 0.002747253 | \n", "| ... | ... | ... | \n", "| 83.5550 | 1 | 0.002747253 | \n", "| 83.9450 | 1 | 0.002747253 | \n", "| 84.2675 | 1 | 0.002747253 | \n", "| 86.3300 | 1 | 0.002747253 | \n", "| 86.9900 | 1 | 0.002747253 | \n", "| 87.3725 | 1 | 0.002747253 | \n", "| 87.5525 | 1 | 0.002747253 | \n", "| 87.5825 | 2 | 0.005494505 | \n", "| 89.5175 | 1 | 0.002747253 | \n", "| 91.1675 | 1 | 0.002747253 | \n", "\n", "\n" ], "text/plain": [ " avg_temp ndays prob \n", "1 15.49250 1 0.002747253\n", "2 17.67500 1 0.002747253\n", "3 17.84750 1 0.002747253\n", "4 20.11250 1 0.002747253\n", "5 23.27000 1 0.002747253\n", "6 24.62750 1 0.002747253\n", "7 25.07750 1 0.002747253\n", "8 25.14435 1 0.002747253\n", "9 25.42250 1 0.002747253\n", "10 25.46750 1 0.002747253\n", "... ... ... ... \n", "341 83.5550 1 0.002747253\n", "342 83.9450 1 0.002747253\n", "343 84.2675 1 0.002747253\n", "344 86.3300 1 0.002747253\n", "345 86.9900 1 0.002747253\n", "346 87.3725 1 0.002747253\n", "347 87.5525 1 0.002747253\n", "348 87.5825 2 0.005494505\n", "349 89.5175 1 0.002747253\n", "350 91.1675 1 0.002747253" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "avg_temps = day_weather %>%\n", " filter(origin == 'EWR') %>%\n", " group_by(avg_temp) %>%\n", " summarize(ndays=n()) %>%\n", " ungroup() %>%\n", " mutate(prob=ndays / sum(ndays))\n", "avg_temps" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Individual temperatures are not very common! Further, what if we want the probability that it will be 82 degrees?" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", "
avg_tempndaysprob
\n" ], "text/latex": [ "\\begin{tabular}{r|lll}\n", " avg\\_temp & ndays & prob\\\\\n", "\\hline\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "avg_temp | ndays | prob | \n", "||\n", "\n", "\n" ], "text/plain": [ " avg_temp ndays prob" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "avg_temps %>% filter(avg_temp == 82)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "No entries! But what if we plot the distribution of average temps?" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n" ] }, { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIcCAMAAAD7UX68AAAAOVBMVEUAAAAzMzNNTU1ZWVlo\naGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enr6+vw8PD///8Yrk7HAAAACXBI\nWXMAABJ0AAASdAHeZh94AAAWDUlEQVR4nO2djXrTyLJFNb4JCb858fs/7LUVZBTYHaWkUlW1\nvNb3HZgMxrura69xcIAznAFgM0P2AQCOACIBOIBIAA4gEoADiATgACIBOIBIAA4gEoADq0X6\n37+of7cnR89jwPJ5iNRDHgOWz0OkHvIYsHweIvWQx4Dl8xCphzwGLJ+HSD3kMWD5PETqIY8B\ny+chUg95DFg+D5F6yGPA8nmI1EMeA5bPQ6Qe8hiwfB4i9ZDHgOXzEKmHPAYsn4dIPeQxYPk8\nROohjwHL5yFSD3kMWD4PkXrIY8DyeSaRThfm3yPSUQMZ0PyEBpFOv7853T5ApIMGMqD5CRGp\ngzwGLJ9nEWmyCZHoWe+BxUT678rnft7R+L8G2eeCbD4j0tubDLwiXfJaIu0WGAqvSOYnNIl0\n5lO7KQ+Rug5EJD1FfB4idR3Iu3Z6ivg8ROo6EJH0FPF5iNR1IL+zQU8Rn4dIXQfm/xrpXyKO\nuTRFfB4idR2ISHqK+DxE6joQkfQU8XmI1HUgIukp4vMQqetARNJTxOchUteBiKSniM9DpK4D\nEUlPEZ+HSF0HIpKeIj4PkboORCQ9RXweInUdiEh6ivg8ROo6EJH0FPF5iNR1ICLpKeLzEKnr\nQETSU8TnIVLXgYikp4jPQ6SuAxFJTxGfh0hdByKSniI+D5G6DkQkPUV8HiJ1HYhIeor4PETq\nOhCR9BTxeYjUdSAi6Sni8xCp60BE0lPE5yFS14GIpKeIz0OkrgMRSU8Rn4dIXQcikp4iPg+R\nug5EJD1FfB4idR2ISHqK+DxE6joQkfQU8XmI1HUgIukp4vMQqetARNJTxOchUteBiKSniM9D\npK4DEUlPEZ+HSF0HIpKeIj4PkboORCQ9RXweInUdiEh6ivg8ROo6EJH0FPF5iNR1ICLpKeLz\nEKnrQETSU8TnIVLXgYikp4jPQ6SuAxFJTxGfh0hdByKSniI+D5G6DkQkPUV8HiJ1HYhIeor4\nPETqOhCR9BTxeYjUdSAi6Sni8xCp60BE0lPE5yFS14GIpKeIz0OkrgMRSU8Rn4dIXQcikp4i\nPg+Rug5EJD1FfB4idR2ISHqK+DxE6joQkfQU8XmI1HUgIukp4vMQycjHF9b9gIi0Mg+RjCAS\nIqk8RDKCSIik8hDJCCIhkspDJCOIhEgqD5GMIBIiqTxEMoJIiKTyEMkIIiGSykMkI4iESCoP\nkYwgEiKpPEQygkiIpPIQyQgiIZLKQyQjiIRIKg+RjCASKFq9yD5XWe7mwnhFMuXximSEVyRE\nUnmIZASREEnlIZIRREIklYdIRhAJkVQeIhlBJERSeYhkBJEQSeUhkhFEQiSVh0hGEAmRVB4i\nGUEkRFJ5iGQEkRBJ5SGSEURCJJWHSEYQCZFUHiIZQSREUnmIZASREEnlIZIRREIklYdIRhAJ\nkVQeIhlBJERSeYhkBJEQSeUhkhFEQiSVh0hGEAmRVB4iGUEkRFJ5iGQEkRBJ5SGSEURCJJWH\nSEYQCZFUHiIZQSREUnmIZASREEnlIZIRREIklYdIRhAJkVQeIhlpXVjoPd5AJD1FfB4iGUEk\nRFJ5iGQEkRBJ5SGSEURCJJWHSEYQCZFUHiIZQSREUnmIZASREEnlIZIRREIklYdIRhAJkVQe\nIhlBJERSeYhkBJEQSeUhkhFEQiSVh0hGEAmRVB4iGUEkRFJ5iGQEkRBJ5SGSEURCJJWHSEYQ\nCZFUHiIZQSREUnmIZASREEnlIZIRREIklYdIRhAJkVQeIhlBJERSeYhkBJEQSeUhkhFEQiSV\nh0hGEAmRVB4iGUEkRFJ5iGQEkRBJ5SGSEURCJJWHSEYQCZFUHiIZQSREUnmIZASREEnlIZIR\nREIklYdIRhAJkVQeIhlBJERSeYhkBJEQSeUhkhFEQiSVh0hGEAmRVB4iGUEkRFJ5iGQEkf5w\nujD/HpEQ6dMg0h+Pfn9zun2ASIj0WRAJkVQeIhlBpH9sQiREsoNIH4j035XP/byj0SpA9rne\nUemMRpFSzujC50Q6nXlF6ucVafUZeUUyPyEirctDJJ+z3KlIp/ffIBIibTzLfYp0+ssmREKk\njWe5S5FOf78sIRIibTzLPYp0Ov3+LQ38zgZE8jrLPYrUIOKYS1PE5yGSz1kQCZEQyeEsiIRI\niORwFkRCJERyOAsiIRIiOZwFkRAJkRzOgkiIhEgOZ0EkREIkh7MgEiIhksNZEAmREMnhLIiE\nSIjkcBZEQiREcjgLIiESIjmcBZEQCZEczoJIiIRIDmdBJERCJIezIBIiIZLDWRAJkRDJ4SyI\nhEiI5HAWREIkRHI4CyIhEiI5nAWREAmRHM6CSIjUrUjLZ0ck8xMi0ro8RIo6yy4gkp4iPg+R\nos6yC4ikp4jPQ6Sos+wCIukp4vMQKeosu4BIeor4PESKOssuIJKeIj4PkaLOsguIpKeIz0Ok\nqLPsAiLpKeLzECnqLLuASHqK+DxEijrLLiCSniI+D5GizrILiKSniM9DpKiz7AIi6Sni8xAp\n6iy7gEh6ivg8RIo6yy4gkp4iPs9YgI19QSRnEElPEZ9nLMDGviCSM4ikp4jPMxZgY18QyRlE\n0lPE5xkLsLEviOQMIukp4vOMBdjYF0RyBpH0FPF5xgJs7AsiOYNIeor4PGMBNvYFkZxBJD1F\nfJ6xABv7gkjOxIk0/P74dEIklWcswMa+IJIzQSKdhhmIpPKMBdjYF0RyJkikbzOPviGSyjMW\nYGNfEMmZ+E/tlok45tIU8XnGAmzsCyI5w5sNeor4PGMBNvYFkZwJFOn5xK+RPsgzFmBjXxDJ\nmTiRnnmz4cM8YwE29gWRnIkT6bT8LsOxRLJs9AORfHAacHUqIpmfsCXS3b3ZYNkoIgWeZRfi\nRPoyvCJSa6OIFHiWXYgT6eX0+IJIjY0iUuBZdiHyU7s7e7PBslFECjzLLiCSnsLhOSwbRaTA\ns+wCX5DVUzg8h2WjiBR4ll1AJD2Fw3NYNopIgWfZBT6101M4PIdlo4gUeJZdQCQ9hcNzWDaK\nSIFn2YXoT+1eHr8ueYRIO+A04OpURDI/4ccinV+HRZMijrk0hcNzWDaKSIFn2YX4Nxv41E7n\nGXuxsUaI5Ey4SN+He/k7GywbRaTAs+xCwpsNz0siHYTWRo0P98F4SOtMPoexkRKagRbptOxR\nhO9L/zlweI7WRht5G8u5QGtAwxk/mmnbYXzvd9fQJnxBVk/h8ByWjSKS3/3uGtoEkfQUDs9h\n2Sgi+d3vrqFNAkV6fX4Yhofn5T+VFHHMpSkcnsOyUUTyu99dQ5tE/nmk379IWvxTSRHHXJrC\n4TksG0Ukv/vdNbRJnEhPw/UP9r08Dk+IpPI2ltNYI0RyJv7vbOALsjpvYzmNNUIkZxBJT+Hw\nHJaNIpLf/e4a2oRP7fQUDs9h2Sgi+d3vrqFNeLNBT+HwHJaNIpLf/e4a2oS3v/UUDs9h2Sgi\n+d3vrqFN+IKsnsLhOSwbRSS/+901tAki6SkcnsOyUUTyu99dQ5sEivRl/BfDA79Gknkby2ms\nESI5EyfS89v73gPv2um8jeU01ihVpFI4bHp+oW40RToNP6/f/eLrSDovti6INOGw6fmFutEU\niS/IfrA5RErDYdPzC3WjKdKX4en1+h748IhIKi+2Log04bDp+YW60RTp9gXZX4ik8mLrgkgT\nDpueX6gbTZGmL8gu/3+7RBxzaQqH57BsDpHScNj0/ELdaIv0aSKOuTSFw3NYNodIaThsen6h\nbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6hbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6h\nbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6hbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6h\nbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6hbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6h\nbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6hbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6h\nbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6hbiDShGVziJSGw6bnF+oGIk1YNodIaThsen6h\nbiDShGVziJSGw6bnF+rGkUWyrcKyOUSqxkJB1AZ9QaSFRyNSFywURG3QF0RaeDQidcFCQdQG\nfUGkhUcjUhcsFERt0BdEWng0InXBQkHUBn1BpIVHI1IXLBREbdAXRFp4NCJ1wUJB1AZ9QaSF\nRyNSFywURG3QF0RaeDQidcFCQdQGfUGkhUcjUhcsFERt0BdEWng0InXBQkHUBn1BpIVHI1IX\nLBREbdAXRFp4NCJ1wUJB1AZ9QaSFRyNSFywURG3QF0RaeDQidcFCQdQGfblDkRxWtLtIRlr3\nkn2uOHwaswFEWrMiRKqGT2M2gEhrVoRI1fBpzAYQac2KEKkaPo3ZACKtWREiVcOnMRtApDUr\nQqRq+DRmA4i0ZkWIVA2fxmwAkdasCJGq4dOYDSDSmhUhUjV8GrMBRFqzIkSqhk9jNmAU6fT2\n7QVEKkTrXrLPFYdPYzZgE+nNnz/fIFINWveSfa44fBqzAZNIpzMiTXk+T+5E616yzxWHT2M2\nYHtFQqRbns+TO9G6l+xzxeHTmA1sE+m/K5/5ebuSvcR8uJnIvi3Q7ytS9hLz4WasnSn2ioRI\nNeBmrJ1BJEH2EvPhZqydQSRB9hLz4WasnUEkQfYS8+FmrJ0pIVK139mQvcR8uBlrZ7JFUkQc\n80Oyl5gPN2PtDCIJspeYDzdj7QwiCbKXmA83Y+0MIgmyl5gPN2PtDCIJspeYDzdj7QwiCbKX\nmA83Y+0MIgmyl5gPN2PtDCIJspeYDzdj7QwiCbKXmA83Y+0MIgmyl5gPN2PtDCIJspeYDzdj\n7QwiCbKXmA83Y+0MIgmyl5gPN2PtDCIJspeYDzdj7QwiCbKXmA83Y+0MIgmyl5gPN2PtDCIJ\nspeYDzdj7QwiCbKXmA83Y+0MIgmyl5gPN2PtDCIJspeYDzdj7QwiCbKXmA83Y+0MIgmyl5gP\nN2PtDCIJspcIdWl1BpEE2cuCurQ6g0iC7GVBXVqdQSRB9rKgLq3OIJIge1lQl1ZnEEmQvSyo\nS6sziCTIXhbUpdUZRBJkLwvq0uoMIgmylwV1aXUGkQTZy4K6tDqDSILsZUFdWp1BJEH2sqAu\nrc4gkiB7WVCXVmcQSZC9LKhLqzOIJMheFtSl1RlEEmQvC+rS6gwiCbKXBXVpdQaRBNnLgrq0\nOoNIguxlQV1anUEkQfayoC6tziCSIHtZUJdWZxBJkL0sqEurM4gkyF4W1KXVGUQSZC8L6tLq\nDCIJspcFdWl1BpEE2cuCurQ6g0iC7GVBXVqdQSRB9rKgLq3OIJIge1lQl1ZnEEmQvSyoS6sz\niCTIXhbUpdUZRBJkLwvq0uoMIgmylwV1aXUGkQTZy4K6tDqDSILsZUFdWp1BJEH2sqAurc4g\nkiB7WVCXVmcQSZC9LKhLqzOIJMheFtSl1RlEEmQvC+rS6gwiCbKXBXVpdQaRBNnLgrq0OoNI\nguxlQV1anakoUjrZy4K6JNSRVyQ4Hq3OVHxFijjmh2QvC+rS6gwiCbKXBXVpdQaRBNnLgrq0\nOoNIguxlQV1anUEkQfayoC6tziCSIHtZUJdWZxBJkL0sqEurM4gkyF4W1KXVGUQSZC8L6tLq\nDCIJspcFdWl1BpEE2cuCurQ6g0iC7GVBXVqdQSRB9rKgLq3OIJIge1lQF2Nl1pcQkeDIGCuz\nvoSIBEfGWJn1JUQkODLGyqwvISLBkTFWZn0JEQmOjLEy60uISHBkjJVZX0JEgiNjrMz6EiIS\nHBljZdaXEJHgyBgrs76EiARHxliZ9SVEJDgyxsqsLyEiwZExVmZ9CREJjoyxMutLiEgAN9aX\nEJEAbqwvISIB3FhfQkQCuLG+hIgEcGN9CREJ4Mb6EiISwI31JUQkgBvrS4hIADfWlxCRAG6s\nLyEiAdxYX0JEArixvoSIBHBjfQkRCeDG+hLmimQcJ/RO4Q5ZJ9FYeUQCmFgn0Vh5RAKYWCfR\nWHlEAphYJ9FYeUQCmFgn0Vh5RAKYWCfRWHlEAphYJ9FYeUQCmFgn0Vh5RAKYWCfRWHlEAphY\nJ9FYeUQCmFgn0Vh5RAKYWCfRWHlEAphYJ9FYeUQCmFgn0Vh5RAKYWCfRWPkQkbLvB2ALiATg\nACIBOIBIAA4gEoADiATgACIBOIBIAA4gEoADiATgwF4inS4gEtwNO4l0un2DSHAPIBKAA4gE\n4MDuIv135dM/D+AO2PMVaW+OnseA5fMQqYc8Biyfh0g95DFg+TxE6iGPAcvnIVIPeQxYPm+N\nSPbf2bA3R89jwPJ5q0R6T8Qxl6Y4eB4Dls9DpB7yGLB8HiL1kMeA5fMQqYc8Biyfh0g95DFg\n+TxE6iGPAcvnIVIPeQxYPg+ReshjwPJ5iNRDHgOWz0OkHvIYsHweIvWQx4Dl8xCphzwGLJ+H\nSD3kMWD5PETqIY8By+chUg95DFg+z0GkAhz+bzJiwH5ApMIwYD8gUmEYsB8QqTAM2A89iwRQ\nBkQCcACRABxAJAAHEAnAAUQCcKBPkaa/9PX0/m9/PQ7TYIeebxrwEBN2KdLtryE/xAoUp9l3\nhx7yMMMhUknuQaRjDdelSCOnA23hb07z74865bH+S9i3SEf5BPtvbr+COJ+PVLZ3HOwXud2K\ndOieTYMddsDzfLZDDNi1SO//4Wjcg0h//VPH9CrSwdagOLZIJ/mP/dKpSKc/3x5iDX9xB5/a\nHW2DfYo0e3f4EFv4m9Psf8eccCbSMebrUqTT0b/w/+63bmSfZR+m/xYeZcAuRQKoBiIBOIBI\nAA4gEoADiATgACIBOIBIAA4gEoADiATgACIBOIBIHfPtGL+75hAgUscMbK8MrKJjEKkOrKIk\nP78Mw+n5/Do8jB8+DL/OL4/Dw4936gzD+OHr0zA8vY4fn78MX84vD8OX198fPb5knP4eQaSK\n/BhGni8qXE14ufj0enr7d7NH/f5w/IGH8eOLfsP3h8s3T9ePLoINp9ecCe4ORKrIw/D9fP51\n0eTHRabz+Xn4cf46PJ5fH99/Mjd+9PX6kOfh26jO+ftVv+/XHxiGx9fz4/jzYX8QqSYvP76O\n1jy8/fnFq1sv15emf0V6GP/V5VO6y4cv12/ePq27/O/X22sZRIBIJXmcPo/7Nvw8/xy+Tm8s\nCJGGYXrs7w/Pk0j//gTYDe65Ik/Dw7cf48vP6+XTtefpRQaR6sI9V+Tt3bjx26fh5fpp29Kn\ndrcPZyKNP+Ex8tx3DCJVZLh8Qvf7nYWfw/WD69sJj+NnfO8fNv7A8/n8/fqjf4s0vjvxNeH4\n9wgiVeR5+PNe98Pb+wXi7e+LK6fbD/wSIg3jAyACRCrJ00WDn2/WfLu+FX7h+gXZ7+9F+jZ6\n8jI++Cw+tXscnviCbBCI1BWGVxjeZgiF2+6E8VdKz9ffsvDpn7DjaeBvuO1O+P3Lppfb291L\noiBSKNx2L3x7GMZf8iBSSbhtAAcQCcABRAJwAJEAHEAkAAcQCcABRAJwAJEAHPh/Vh/xZVnV\nnzMAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ggplot(day_weather %>% filter(origin == 'EWR')) +\n", " aes(x=avg_temp) +\n", " geom_histogram()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Based on this we'd expect 82 to happen sometimes!\n", "\n", "It turns out that, when we have a continuous variable, it isn't meaningful to ask about the probability of it taking on a particular value. If we think about the infinite possibilities, we can see why: even with a limited variable, such as one that only takes on values in the range $[0,1]$, there are infinitely many different values! Since the whole probability distribution must sum to 1, each individual value's probability must be infinitely close to 0.\n", "\n", "This… does not sound useful. But it turns out there is a different, related question we can ask. We _can_ count how many observations have values less than or equal to a particular value! And we can ask how likely it is to see a value less than or equal to a particular value." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "0.416666666666667" ], "text/latex": [ "0.416666666666667" ], "text/markdown": [ "0.416666666666667" ], "text/plain": [ "[1] 0.4166667" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mean(day_weather$avg_temp <= 50)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "0.958791208791209" ], "text/latex": [ "0.958791208791209" ], "text/markdown": [ "0.958791208791209" ], "text/plain": [ "[1] 0.9587912" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mean(day_weather$avg_temp <= 82)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is called the **cumulative** probability. We can also ask about the probability of seeing a value in a particular range by subtracting: $P(a < X \\le b)$ = $P(X \\le b) - P(X < a)$" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "0.0119047619047619" ], "text/latex": [ "0.0119047619047619" ], "text/markdown": [ "0.0119047619047619" ], "text/plain": [ "[1] 0.01190476" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mean(day_weather$avg_temp <= 82.5) - mean(day_weather$avg_temp <= 81.5)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There is a 1.2% chance of a day having an average temperature within 0.5 of 82. Cool!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Distributions\n", "\n", "Counting things up turns out to not be a very friendly way of thinking about continuous probability distributions. Instead, there are a bunch of standard probability distributions defined with mathematical functions.\n", "\n", "One of these is particularly common and important: the _normal_ or _Gaussian_ distribution. Let's see its CDF:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIcCAMAAAD7UX68AAAAMFBMVEUAAAAzMzNNTU1oaGh8\nfHyMjIyampqnp6eysrLHx8fQ0NDh4eHp6enr6+vw8PD////ZB0PiAAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAXWElEQVR4nO2d2XIbSRIEWxBn56Tw/3+7FMUDAHF0VWZVRpQ8HjQUrM03Nki3\nBiGgezsSQsLZqgsQskIQiZCEIBIhCUEkQhKCSIQkBJEISQgiEZIQRCIkIVkiPT/OnmPa40S1\nKutELSuLSCVUq7JOVESKx4lqVdaJikjxOFGtyjpRESkeJ6pVWScqIsXjRLUq60RFpHicqFZl\nnaiIFI8T1aqsExWR4nGiWpV1oiJSPE5Uq7JOVESKx4lqVdaJikjxOFGtyjpRESkeJ6pVWScq\nIsXjRLUq60RFpHicqFZlnaiIFI8T1aqsExWR4nGiWpV1ohqJdPj86iWn/0WkaixUH5E+nTm8\n/XH4+AsiFWOh2oh0OCKSLhaqjUhHRBLGQl1EpG8v2YkhpCpbc5roO4/jjKSL/e2o7Ur8zIiy\niFRCtSorQ92jxBpP7RCpFrsgtfVMgkjhOFGtypZQe5+GIVI4TlSrsnOp3b/H3MfGMk6kn3/y\nzgY1rDc1ZtBNbEZ4r50o1arseGqKQl+xeUEkUapV2bHUPIfOsLlBJFGqVdlx1FyHPrD5QSRR\nqlXZIdTkE9FHECkcJ6pV2Xzq67tu0qmvQaRwnKhWZZOpb2eixYZFpBKqVdlM6ucTusWGRaQS\nqlXZNOrZb0WLDYtIJVSrsknUixcXFhsWkUqoVmUzqF9foltsWEQqoVqVjVPnfd4BkeJxolqV\njVKv/3vRYsMiUgnVqmyIevOfXRcbFpFKqFZlI9Tbb15YbFhEKqFale2m3n0T0GLDIlIJ1aps\nJ/XBW+kWGxaRSqhWZfuoj96RutiwiFRCtSrbQ338zu7FhkWkEqpV2Xbqng9ILDYsIpVQrcq2\nUiuvm4VI8ThRrco2Und+Xm+xYRGphGpVtom6+2Oviw2LSCVUq7IN1IZPjy82LCKVUK3K7qe2\nXIRhsWERqYRqVXY3telqJosNi0glVKuyO6mNFwVabFhEKqFald1Hbb221mLDIlIJ1arsHqrK\nbSMQKR4nqlXZHdQhN8HrCiKF40S1KvuY2nPJ1MWGRaQSqlXZR9S+Sw8vNiwilVCtyj6gdl7B\ne7FhEamEalX2PrX3SviLDYtIJVSrsnepYveoRKR4nKhWZe9R++/MstiwiFRCtSp7mxq5w9Fi\nwyJSCdWq7E1q6EZhiw2LSCVUq7K3qLEb7i02LCKVUK3K3qAGb1y52LCIVEK1KnudGr0D7GLD\nIlIJ1arsVWr4RsqLDYtIJVSrsteo8RuSLzYsIpVQrcpeocY9Wm1YRCqhWpX9Qo3+enSdmhNE\nCseJalX2kpqh0XLDIlIJ1aosIiGSKtWq7AU1x6PVhkWkEqpV2XNqkkerDZsvElk6/Jg8Cmek\niVSrsqfUrPPRcsMiUgnVquwnNeV17y/U1CBSOE5Uq7InIg2hpgaRwnGiWpX9oGZ6tNqwiFRC\ntSr7Tk31aLVhEamEalX2jZrr0WrDIlIJ1arsL2qyR6sNi0glVKuyr9Rsj1YbFpFKqFZlf1LT\nPVptWEQqoVqVRSREUqValT2O8Gi1YRGphGpV9jjCo9WGRaQSqlXZ4wiPVhsWkUqoVmWHeLTa\nsIhUQnUquxl1RaSEOFGNym5GXYdhEUmUalQWkXZREamEalQWkXZREamE6lN2M+o6DotIolSb\nstsQ6vMwKiLF40R1KbsNoT6PoyJSPE5Uk7LbEOrzQCoixeNE9Si7DaE+j6QiUjxOVIuy7+9o\ncOg6GItIolSHsh/vDDLoOhqLSKJUh7KI1EJFpBKqQ1lEaqEiUgnVoOzne771uw7HIpIoVb/s\nyWcn5LuOxyKSKFW+7OlnkNS7TsAikihVvezZZ/nEu87AIpIoVbzs+WditbtOwSKSKFW8LCI1\nUxGphKpd9uIiDdJd52ARSZSqXRaR2qmIVEKVLnt51SDlrpOwiCRKVS775epbwl1nYRFJlKpc\nFpF6qIhUQhUu+/VykLpdp2ERSZSqW/bKZVVlu87DIpIoVbbstcsTq3adiEUkUapq2auX+Rbt\nOhOLSKJU1bKI1EtFpBKqallE6qUiUglVtOz1G7hodp2KRSRRqmbZGzdCkuw6F4tIolTNsojU\nT0WkEqpk2Vt35lPsOhmLSKJUxbI373Ap2HU2Nl+kw0tOvnz9y+HkQUSqxEaot+8Uq9d1OjZd\npMPHHycPHM4OSanVEyeqYFlEClGDIn0RC5EqsQHqnVuXy3Wdj50i0rlHiFSI7afe8UiuawF2\ntEi//vr5K9K3l+zBELVkvdREAiKdP5bid0+cqHJlOSMFqQkiXXyVUqsnTlS1svc8UutagR0s\n0uWrDohUjO2l3vVIrGsJdopIPLWTwSKSu0gn56aUWj1xomqVve+RVtca7Lh3NpwadfbGBkQq\nxPZRH3gk1bUIy3vtRKlKZR95pNS1CotIolSlsoiUQUWkEqpQ2YceCXUtwyKSKFWoLCKlUBGp\nhCpUFpFSqIhUQtUp+9gjna51WEQSpcqU3eGRTNdCLCKJUmXKIlISFZFKqCpl93ik0rUSi0ii\nVJGyuzwS6VqKRSRRqkhZREqjIlIJVaPsPo80utZiEUmUKlF2p0cSXYuxiCRKlSiLSIlURCqh\nSpRFpEQqIpVQFcru9UihazUWkUSpCmURKZOKSCVUgbK7PRLoWo5FJFFqfdn9HtV3rccikii1\nviwi5VIRqYRaXrbBo/KuAlhEEqVWl23xqLqrAhaRRKnVZREpm4pIJdTisk0eMSwiyVIRabVh\nEamEikirDYtIJdTasm0eMSwiyVJLyzZ6xLCIJEtFpNWGRaQSamXZVo8YFpFkqYVlmz1iWESS\npSLSasMiUgm1rmy7RwyLSLJURFptWEQqoZaV7fCIYRFJllpVtscjhkUkWSoiLTYsItVQEWmx\nYRGphlpUtssjhkUkWSoirTUsIhVRa8r2ecSwiCRLRaSlhn1GpCJqSdlOjxgWkWSpFWV7PWJY\nRJKlItJCw/46ApEqqAVluz1iWESSpSLSOsO+HZEuEpEM395Z4Yw0kTq/bP8JiWF5aidLRaRl\nhn0/ApEqqNPLBjxiWESSpSLSKsN+HIFIFdTZZSMeMSwiyVInlw15xLCIJEtFpDWGPTkCkSqo\nc8vGPGJYRJKlItISw54egUgV1Kllgx4xLCLJUmeWjXrEsIgkS0WkBYY9PwKRKqiItMCw50cg\nUgUVkRYY9vwIRKqgTiwb9ohhEUmWOq9s3COGRSRZKiLZD3t5BCJVUKeVTfCIYRFJlopI7sN+\nOQKRKqizymZ4xLCIJEudVDbFI4ZFJFkqInkPe+UIRKqgzimb4xHDIpIsFZGsh712BCJVUBHJ\nethrRyBSBXVK2SSPGBaRZKmI5Dzs1SMQqYI6o2yWRwyLSLJURDIe9voRiFRBnVA2zSOGRSRZ\nKiL5DnvjCESqoI4vm+cRwyKSLHV42USPGBaRZKmI5DrszSMQqYI6umymRwyLSLJURDId9vYR\niFRBHVw21SOGRSRZKiJ5DnvnCESqoCKS57B3jkCkCurYsrkeMSwiyVIRyXLYe0cgUgV1aNlk\njxgWkWSpiOQ47N0jEKmCOrJstkcMi0iy1IFl0z1iWESSpSKS37APjkCkCuq4svkeMSwiyVIR\nyW7YR0cgUgV1WNkBHjEsIslSEclt2IdH3BTpx5/ft+3pr4tHDy85/fpw8RgiVWIRSU+k/w7b\naw7/nXn08cfnf88eQ6RK7HGERwwbEulpe3pR6L+n7X+IZINFJD2Rtl9//7GdPX4qzeHKY4hU\nih3iEcOGRPpj+/Hr4aebIr3/ivT52LeXHElZsl4wIoFcfhP+9/Tvz6d2Tzd/R3r/mjOSCnZz\nmsBp2NhTu9NcE+n9AURSwSISIiXEiToEu1lNYDTsgH+Q5amdLnbzmsBn2F3UoEgXLzYgUiEW\nkcZh898i9P4uhtN3NPDOBgXsNoT6bEa1EelxUmr1xImKSD7D7qMiUgkVkXyG3UdFpBJqPnYb\nQn12oyJSPE5URLIZdicVkUqo6dhtCPXZjopI8ThREcll2L1URCqhZmO3IdRnPyoixeNERSST\nYXdTEamEmox9/xyS0wQWw+6nIlIJNRf78Xk+pwkchm2gIlIJFZEshm2gIlIJNRX7+QFzpwkM\nhm2hIlIJFZEchm2hIlIJNRN7csUTpwn0h22iIlIJFZEMhm2iIlIJFZEMhm2iIlIJNRF7ei07\npwnkh22jIlIJFZH0h22jIlIJNQ97dnFVpwnUh22kIlIJFZHkh22kIlIJNQ17frVvpwnEh22l\nIlIJNQt7cdV8pwm0h22mIlIJFZHEh22mIlIJNQl7eRsXpwmkh22nIlIJFZG0h22nIlIJNQf7\n5b5iThMoD9tBRaQSKiJJD9tBRaQSKiJJD9tBRaQSagr26x1jnSYQHraHikglVERSHraHikgl\n1AzslVuYO02gO2wXFZFKqIgkPGwXFZFKqAnYKx5ZTSA7bB8VkUqocew1j6wmUB22k4pIJVRE\nkh22k4pIJdQw9qpHVhOIDttLRaQSKiKpDttLRaQSahR73SOrCTSH7aYiUgkVkUSH7aYiUgkV\nkUSH7aYiUgk1iL3hkdUEksP2UxGphIpImsP2UxGphBrD3vLIagLFYQNURCqhhrA3PbKaQHDY\nCBWRSqiIpDhshIpIJdQI9rZHVhPoDRuiIlIJFZEEhw1R80UiY8P3STyckSZS+7F3zkdeE6gN\nG6QiUgkVkeSGDVIRqYSKSHLDBqmIVEJFJLlhg1REKqF2Y+96ZDWB2LBRKiKVUHux9z2ymkBr\n2DAVkUqoiCQ2bJiKSCXUTuwDj6wmkBo2TkWkEioiaQ0bpyJSCbUP+8gjqwmUhk2gIlIJtQv7\n0COrCYSGzaAiUgkVkZSGzaAiUgm1B/vYI6sJdIZNoSJSCbUDu8Mjqwlkhs2hIlIJFZF0hs2h\nIlIJFZF0hs2hIlIJFZF0hs2hIlIJtR27xyOrCVSGTaIiUgm1GbvLI6sJRIbNoiJSCRWRVIbN\noiJSCbUVu88jqwk0hk2jIlIJtRG70yOrCSSGzaMiUgkVkTSGzaMiUgm1DbvXI6sJFIZNpCJS\nCbUJu9sjqwkEhs2kIlIJFZEUhs2kIlIJFZEUhs2kIlIJFZEUhs2kIlIJtQW73yOrCeqHTaUi\nUgm1AdvgkdUE5cPmUhGphIpI9cPmUhGphLof2+KR1QTVwyZTEamEuhvb5JHVBIiESBOxiCSB\nRSRR6l5sm0dWEyASIk3DNnpkNQEiIdI0LCKJYBFJlIpIiIRI07CtHllNgEiINAuLSCpYRBKl\n7sI2e2Q1ASIh0hxsu0dWEyASIs3BIpIOFpFEqTuwHR5ZTYBIiDQD2+OR1QSIhEgTsF0eWU2A\nSIg0AYtIUlhEEqUiEiIh0gRsn0dWEyASIo3HIpIWNl+kw0suvz6cPohICdhOj6wm+L1FOnz8\ncfL14eyQlFo9caLex/Z6ZDUBIiHSaCwiqWGHivT+wLlHiBTGdntkNQEifRHp81ekby/ZgyF3\nkvWqD6lJl0iHr4+l+N0TJ+odbP/5yGsCzkiXIp1/gUhBLCIJYkeLdO2rlFo9caLexkY8spoA\nkS5PQzy1y8QikiJ2rEgnL4OfPNtLqdUTJ+pNbMgjqwl+b5E+383w9mrd4eQxRIpjEUkSy3vt\nRKm3sDGPrCZAJEQahg16ZDUBIiHSKGzUI6sJEAmRRmERSRWLSKLUq9iwR1YTIBIijcHGPbKa\nAJEQaQwWkXSxiCRKRSREQqQx2ASPrCZAJEQagc3wyGoCREKkAdgUj6wmQCREysfmeGQ1ASIh\nUj4WkbSxiCRKvcAmeWQ1ASIhUjY2yyOrCRAJkbKxiKSORSRR6hk2zSOrCRAJkZKxiCSPRSRR\n6ik2zyOrCRAJkVKxiR5ZTYBIiJSJzfTIagJEQqREbKpHVhMgEiLlYXM9spoAkRApDZvskdUE\niIRIaVhEMsEikigVkRAJkdKw2R5ZTYBIiJSETffIagJEQqQcbL5HVhMgEiKlYAd4ZDUBIiFS\nBnaER1YTIBIiJWSIR1YTIBIiJQSREAmR4tmcyjpRESkeI+rmVNaKikjx+FA3p7JeVESKx4a6\njcFCHYdFJEHqNgYLdSAWkfSo2xgs1JFYRNKjItJIKiLF40HdxmChDsUikhr1/R9iLcoaUhEp\nHgfqxxsaHMo6UhEpHgPq5xuDDMpaUhEpHn3qyRvs9Mt6UhEpHnnq6RtV5cuaUhEpHnkqIo2n\nLiQSuREG/j3CGWks9fwTSOJlbakLnZFSavVEm3rxST7tsr5URIpHmbpdfiJWuawzFZHiEaZ+\n/WC5cFlrKiLFo0u9coEG3bLeVESKR5eKSNOoiBSPLPXaFYNky5pTESkeUeqX1xlysFcDFZHi\n0aTeuICdZll/KiLFI0m9dSFIybILUBEpHkXqzQuqKpZdgYpI8QhSb1+YWLDsElREikePeucC\n33pl16AiUjxq1Osv14Wx9wIVkeIRo96/34RY2WWoiBSPFvXBfVu0yq5DRaR4pKiP7n8kVXYh\nKiLFo0R9eB8xpbIrUREpHh3q3ZcZ+rGPAxWR4lGh7tBIp+xqVESKR4S67+6wImWXoyJSPBrU\nXecjlbLrUREpHgnq3ruVS5RdkIpI8QhQd56OWrG7AxWR4imn7tdIoOyiVESKp5ra4lF52VWp\niBRPLbVJo+qy61IRKZ5KaqNGK06gQUWkeAqprRotOIEIFZHiKaM2n472YTsCFZHiKaL2aLTY\nBEJURIqnhNqn0VITSFERKZ4Kaq9HC02gRUWkeKZTt26NlplAjopI8UymBiy6hw0FKiLFM5Ua\n02iJCSSpiBTPRGpUowUmEKUiUjyzqJFfje5gMwIVkeKZQ03RyHsCZSoixTOBmmTRJTYtUBEp\nnuHUNIuebSeQpyJSPEOpW97J6BSbHKiIFM84arJE79j8QEWkeMZQs09Fb3GawImKSPEMoL5I\ntNj3e3UqIsWTTH07FS32/V6dikjxpFG37eT53GLf79WpiBRPBvXMoTTqlehO4E1FpHhC1O2r\nQgnU2xGcYAmqjUiHl1x+ffqYnUg3DQpRH0ZpgpWoLiIdPv74/Pr0MRuRto9kUvdHYIIlqYgU\nzwPqdpYsam+cfjidqIgUzzt1u54gNTlOP5xO1EVE+vaSHZQbP+pJ2fP/g5BRWeaM5EC1KutE\nXeSMhEi1WKiIFI8T1aqsExWR4nGiWpV1oiJSPE5Uq7JOVBeRPt/NcPq18zsbaqhWZZ2oNiI9\nTkqtnjhRrco6UREpHieqVVknKiLF40S1KutERaR4nKhWZZ2oiBSPE9WqrBMVkeJxolqVdaIi\nUjxOVKuyTlREiseJalXWiYpI8ThRrco6UREpHieqVVknKiLF40S1KutERaR4nKhWZZ2oiBSP\nE9WqrBMVkeJxolqVdaIiUjxOVKuyTtSFRNqRPVcaUolTV6uyTl2byiLS1Th1tSrr1BWR4nHq\nalXWqSsixePU1aqsU1dEisepq1VZp66qIhGybhCJkIQgEiEJQSRCEoJIhCRkrkiHx4do5Pwy\nstIxqmrV9Wcayk4VyWbFiwubK8eoqlXXn2n5eZ0p0sFmRKPvuFFVq67Hxp/XiSIdnEY8upQ1\n++E06tr284pIN+NRFpFGRVWkw9FoxKNNVzeRbKo2/rxOE8ntG+7S1W1Xl6qtu84Q6fVFz8Ov\nTPifC+Wjo3zTt5iJZNO09eeVf0e6HpumXiLZFP0VsTPSZ2x2tCnqJZJLz/cgUjAeT0N/xaep\n1ayvkRWJkEWDSIQkBJEISQgiEZIQRCIkIYhESEIQiZCEIBIhCUEkQhKCSIQkBJEISQgiEZIQ\nRCIkIYjknT+2f4/Hf7en6h6/fRDJOz+278fj00+bSGkQyTx/bf/8vf1Z3YIgknvMPiu3ahDJ\nPX9v29/VHQgi2QeRJIJI7jl8/85Tu/ogknn+2v75Z/urugVBJO+8vvz9fftR3eO3DyJ55+0f\nZP+o7vHbB5EISQgiEZIQRCIkIYhESEIQiZCEIBIhCUEkQhKCSIQkBJEIScj/ARD9z1ocqmWB\nAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ggplot(data.frame(x=seq(-4, 4, 0.01)) %>% mutate(p=pnorm(x))) +\n", " aes(x=x, y=p) +\n", " geom_line()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We describe the cumulative probability with a _cumulative distribution function_, or CDF. For a CDF $F$ for a random variable $X$, $F(x) = P(X \\le x)$. R supports many probability distributions, and the `p` function like `pnorm` is the cumulative distribution for that distribution. The CDF of the ‘standard normal’ distribution is\n", "\n", "$$F_{\\mathrm{norm}}(x) = \\frac{1}{\\sqrt{2\\pi}} \\int_{-\\infty}^{x} e^{-\\frac{t^2}{2}} dt$$\n", "\n", "A CDF is monotonic — if $x > y$, then $F(x) \\ge F(y)$ — and has a minimum of 0 and a maximum of 1.\n", "\n", "Cumulative distribution is not the only way we can think of probabilities, though. This distribution may be more familiar if we look at it like this:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIcCAMAAAD7UX68AAAAMFBMVEUAAAAzMzNNTU1oaGh8\nfHyMjIyampqnp6eysrLHx8fQ0NDh4eHp6enr6+vw8PD////ZB0PiAAAACXBIWXMAABJ0AAAS\ndAHeZh94AAAYA0lEQVR4nO2d6XobtxIFx7Rzs8p8/7e9WmyJyywAuoE5Z6bqRz45sYudxpRI\nUxQ1XQEgzLT3AABHgJAAEiAkgAQICSABQgJIgJAAEiAkgAQICSCBaEgv25T8ngY6ac3GRdtP\nW+AlpOFetHZaQlL0orXTEpKiF62dlpAUvWjttISk6EVrpyUkRS9aOy0hKXrR2mkJSdGL1k5L\nSIpetHZaQlL0orXTEpKiF62dlpAUvWjttISk6EVrpyUkRS9aOy0hKXrR2mk7hHR55faXhIT2\n+Nr8kC739VwICe0JtL1DunCPhPYM2s4hXXhoh/YU2mEhfXul5I8DHJ7qkC5X7pFktNMbPcRO\nS/C8R3p43oGQdtN+NHTtE5PLErpq+4b0ASHtrP3dzvX+l1l4LKGztvvT39wj7ay9uQu6fv27\nxBtwWEJ/LSEpelNDmtVmlmSwhP7ajq9suHnCgZD20t7d91yX/kMM+SWM0PJaO0Vvmva+luvK\nfwugvoQhWkJS9CZpH+91ruv/uRXtJQzSEpKiN0f71MmjlpCGeglpuDdF+5zJkzanJOUlDNMS\nkqJ3VEg5JSkvYZiWkBS9GdqZRma0GSUJL2GclpAUvQnauULmtAkl6S5hoJaQFL1x7Wwfs9p4\nSbJLGKklJEVvWDtfx7w2XJLqEoZqCUnRG9UutLGgjZYkuoSxWkJS9Aa1S2UQUj8tISl6Y9rF\nMJa0wZIklzBaS0iK3sEhBUuSXMJoLSEpekPa5SoIqZ+WkBS9o0OKlaS4hOFaQlL0RrQrTaxo\nIyUJLmG8lpAUvQHtWhFr2kBJekvYQUtIit527WoPq9r2kuSWsIeWkBS9zdr1Ggipn5aQFL2E\nZKclJEVvq3YjhnVtc0liS9hHS0iK3kbtVgqE1E9LSIreXUJqLklrCTtpCUnRu09IrSVpLWEn\nLSEpetu0mx0QUj8tISl6dwqpsSSpJeylJSRFb5N2u4JtbVNJSkvYTUtIit4WbUEDhNRPS0iK\n3t1CaipJaAn7aQlJ0dugLSmgRNtQks4SdtQSkqK3Xlt0/RNSPy0hKXoJyU5LSIream3Z5U9I\n/bSEpOjdMaSGklSWsKuWkBS9tdrCi5+Q+mkJSdG7Z0j1JYksYV8tISl6dw2puiSRJeyrJSRF\nb6W29MonpH5aQlL07htSbUkaS9hZS0iK3jpt8XVPSP20hKTo3TmkypIklrC3lpAUvVXa8que\nkPppCUnRu3dIdSUpLGF3LSEpemu0Fdc8IfXTEpKid/eQqkoSWML+WkJS9O5/xRNSvpeQhnv3\nfwxGSPleQhru3T+kTo8Ya/DSDg0J0ul2JJx1R7hHGuQVuEfq8qx6FV5aHtopehW+ckpI2V5C\nGu5VCKnDK4/q8NISkqJX4tWlhJTsJaThXomQ0r87oxIvLSEpegu1nb8Dj5ByvYQ03KsRUvJ3\nsNfipSUkRS8h2WkJSdFbpu3/dj+Jb5dXj5eWkBS9hGSnJSRFb5F2wDs5ElKml5CGe1VCyntv\n/ga8tISk6C3RDnm3e0JK9BLScC8h2WkJSdFboB3zMyoJKdFLSMO9MiGl/UTNBry0hKToJSQ7\nLSEpenVCSvph6S14aQlJ0butbemIkDpqCUnRKxRSwS15nRkhRThaSE0dEVJHLSEpepVC2r4t\nrzMjpAiEVKRtuy2vMyOkCAcLqa2j1mm3bs3rzAgpAiGVaBtvzevMCCnCsUJq7IiQOmoJSdGr\nFdLW7XmdGSFFOFRIrR0RUkctISl6CclOS0iKXkKy0xKSondV29xR+7TrN+l1ZoQUgZA2te03\n6XVmhBThQCG1d0RIHbWEpOhVC2n9Rr3OjJAiENKWdh1CSvAS0nCvXEirt+p1ZoQUgZC2tBsQ\nUtxLSMO9K9pAR6FpV27X68wIKQIhbWg3IaSwl5CGe5e1kY4IqaOWkBS9giGt3LLXmRFShKOE\nFOqIkDpqCUnRqxjS8m17nRkhRSCkVW0RhBT0EtJw75I21lF02qVb9zozQopASGvaQggp5iWk\n4d4FbbAjQuqoJSRFLyHZaQlJ0UtIdtoOIV1emfuYkILaaEfhaRcG8Dozm5Aun/+4/5iQolpC\nEtYSkqJ3VhvuiJA6avuGdL3/OGWcJghpUVvD/AheZ+Ye0rdXSv44LBF9qucYIxyChpB4siFN\nK3CPND+D15m53yMRUlRLSMpaQlL0zmnjHRFSRy3P2il6ZUOancLrzAgpgn9ICR0RUkdtx1c2\nXG4+JqSoViSkuTm8zswnpGVSxmmCkBa01RBSs5eQhnuftRkd5Uz7PInXmRFSBEKa1zZASK1e\nQhruJSQ7LSEpep+0KR0lTfs0i9eZEVIEQprVNkFIjV5CGu591OZ0REgdtYSk6CUkOy0hKXoJ\nyU5LSIreB21SR1nTPo7jdWaEFIGQZrStEFKbl5CGe++1WR0RUkctISl6tUN6HMjrzAgpAiE9\na9shpCYvIQ33iof0MJHXmRFSBEJ61gYgpBYvIQ333mnTOiKkjlpCUvSqh3Q/k9eZEVIEQnrS\nhiCkBi8hDffeavM6ypz2diqvMyOkCIT0qA1CSPVeQhruvdEmdkRIHbWEpOjVD+l2Lq8zI6QI\nhPSgDUNI1V5CGu790mZ2lDvt12ReZ0ZIEQjpXpsAIdV6CWm4l5DstISk6P3UpnZESB21hKTo\nJSQ7LSEpen9rczsipI5aQlL0OoT0NZzXmRFSBEK61eZASJVeQhrutQjpczqvMyOkCIR0q02C\nkOq8hDTc+0ub3BEhddQSkqLXI6Tf83mdGSFFIKQbbRqEVOUlpOHeD212R/nTTn20L4ZaQlL0\nEpKdlpAUvYRkpyUkRe+7Nr2jDtNOfbQvflpCUvQSkp2WkBS9b9r8jgipo5aQFL02Ib1P6XVm\nhBSBkH5rkyGkci8hDfdeu3TUZdrJ7cwIKQIh/dKmQ0jFXkIa7iWkFzft0JCgGJtV2wyqBPdI\ng7zXLndI3CN11PLQTtF77dIRIXXUEpKi1yik15K8zoyQIhDSu7aHlJBKvYQ03OsU0svkdWaE\nFIGQ3rVdrIRU6CWk4V5CejngpUBIw719OmLajlpCUvR6XZpe0xJSBK+QzB4sEVKZl5BGe81C\nsvobHSGFIKQ3CKmflpD0vH5f4rR5ZWA/LSHpeQnpl7YLhBTBKSTDl4ESEiHpeQ1Dsvk2xH5a\nQpLzEtKntgeEFMEoJMv35SEkQlLzEtKXtgeEFIGQXrpqCYmQxLymbwLs8XaWHbWEJOYlpFtt\nBwgpgk1Irj9xiJAIScrrGpLFD6HpqSUkLS8h3WvzIaQIhNRdq/+DOrtqCUnLS0gP2nQIKQIh\nddcS0ubvIKRh3qmP9mWENrskryUQkpSXkJ602RBSBJOQfl+LXlsgpDIvIQ3zWoeUXZLXEghJ\nyUtIM9pkCCmCR0ifV6LXFj61uSV5LYGQhLyENKvNhZAiWIT0dR16bYGQyryENMhrH1JuSV5L\nICQdLyEtaFMhpAgOId1chV5bIKQyLyGN8RLSkjYVQopASEO0hLT6OwhphPf2IvTawo02sySv\nJRCSipeQlrWZEFIE/ZDuLkGvLRBSmZeQRniPEVJmSV5LICQRLyGtaRMhpAiENEqbV5LXEghJ\nxEtIq9o8CCmCfEj315/XFgipzFsb0uWVuY8JaYXDhJRXktcSQiH9/PP7NP3466Gjz3/cf0xI\naxDShjYNwZD+u0zvXP4jpCAPV5/XFh60WSV5LSES0o/px2tC//2Y/rcU0vX+45RxmiCkcVpC\nWvodSyFNH7/+Od39+4WQvr1yhQWiT+MocaT/l048rOiP6efHv/5x+28fQ+LJhm0eP4l7beFR\nm3SX5LWE0JMN//vx79tDux+Lf0cipDIIqUCbhGBI0x0LId0+yEsZpwntkJ6uPK8tEFKZNxTS\nbUeEtMDBQkoqyWsJ+V+QvQvpriNCWoCQirQ52IT0+WqGy8eHF57+3uD5uvPaAiGVeWtDWiZl\nnCYIaaSWkOZ/ByF19c5cdl5bIKQyLyH19R4vpJySvJZASLt7CalUmwIhRSCksdqMkryWQEi7\newmpWJsBIUUQDmnumvPaAiGVeQmpq/eQIWWU5LUEQtrbS0gV2gQIKYJuSLNXnNcWZrXxkryW\nQEg7ewmpShuHkCLIhjR/vXltgZDKvITU0XvYkOIleS2BkPb1ElKlNgwhRVANaeFq89rCgjZa\nktcSCGlXLyFVa6MQUgTRkJauNa8tEFKZl5C6eQ8dUrQkryUQ0p5eQmrQBiGkCJohLV5pXlsg\npDIvIfXyElKLNgghRZAMaflC89oCIZV5CamT9+ghBUvyWgIh7eclpDZtDEKKQEi7aEMleS2B\nkPbzElKjNgQhRVAMaeUq89oCIZV5CamP9wQhhUryWgIh7eVdu8a8tkBIZV5C6uI9RUiRkryW\nQEh7eQkpoA1ASBH0Qlq9wry2sKptL8lrCYS0k5eQQtp2CCmCXEjr15fXFgipzEtIHbynCam9\nJK8lENI+XkIKapshpAhqIW1cXV5b2NC2luS1BELaxUtIYW0rhBRBLKSta8trC4RU5iWkdC8h\nxbWtEFIErZA2Ly2vLRBSmZeQsr3nCqm1JK8lENIOXkLK0DZCSBEIaU9tW0leSyCkHbyElKJt\ng5AiSIW0fV15bYGQyryElOw9XUhtJXktgZCGewuuKq8tEFKZNy8keOOMWzzj//MK3CMleEs+\nO3ttoUDbcpfktQQe2o32njKklpK8lkBIo72ElKhtgJAi6IRUdEV5baFIW1+S1xIIabCXkFK1\n9RBSBJmQyq4nry0QUpmXkBK9hJSrrYeQIqiEVHg5eW2BkMq8hJTnPW9I9SV5LYGQRnpLLyav\nLRBSmZeQ0rxnDqm6JK8lENJILyHla2shpAiEJKCtLMlrCYQ00ktIHbSVEFIEjZCKrySvLRBS\nmZeQsrwnD6mypL2nTfcSUpK3/Dry2gIhlXkJKcl7+pDqStp92mwvIeV4K64iry0QUpmXkHK8\nhFRX0v7TJnsJKcV73GuIJZR5CSnFe9xriLvlMi8hZXgP/NcDQirzElKGl5DeISRCCnmP/CUU\nQirzElKCl5B+cdQvphHSEO+hX2ZGSGVeQop7CemTg77gkJCGeAnpE0IipHYvIX1xzG/KIqQh\nXkL6gpAIqdV77LcrIKQyLyGFvYR0yyHf3I+QBngP/pZuhFTmJaSol5DuOeIboBNSf+/R3/aa\nkMq8hBT0EtIjB/whUYTU3Xv4n/pISGVeQop5CemZ4/0gXULq7W3oyGwLhFTmJaSQl5BmICRC\nqvS2dGS2hRZtwVqEps3xElLES0izEBIh1XkJaZ7tvShNm+IlpIC3qSOzLRBSmZeQAl5CWmJz\nM1LTZngJqd3b1pHZFgipzEtI7V5CWmZrN1rTJngJqdnb2JHZFgipzFsb0uWVm18RUrq2FTHt\nxnbEpo17K0O63OVzOXNIrR2ZbYGQyryRkC6nvkcipHXW96M2bdgbukc6c0jNHZltgZDKvDkh\nfXul5I8fiOhzM8fnrBviHqnG236HZLaFdu3qiuSmjXoJqc1LSJsQEiFtegMdmW0hoF1bkt60\nQS8hNXkJqQBCIqQtLyGVsLIlwWlj3sqQPl/ZcDl1SJGOzLZASGXe2pCWSRmnCUJS1S7vSXHa\nkJeQGryhjsy2QEhlXkJq8BJSKYubkpw24iWkem+sI7MtBLVLu9KcNuAlpGpvsCOzLRBSmZeQ\nqr2EVMPCtkSnbfcSUq032pHZFgipzEtItV5CqmN+X6rTNnsJqdIb7shsC4RU5iWkOm+8I7Mt\nEFKZl5DqvIRUzezKZKdt9RJSnZeQqiEkQnqGkOqZ25nutI1eQqryJnRktoUM7czWhKdt8xJS\njTejI7MtEFKZl5BqvITUxvPelKdt8hJShTelI7Mt5GifNic9bYuXkMq9OR2ZbYGQyryEVO4l\npHYed6c9bYOXkIq9SR2ZbYGQyryEVOrN6shsC4RU5iWkUi8hhXhYn/i09V5CKvSmdWS2hTTt\n/QLVp632ElKhl5CCEBIhvUFIUe42KD9trZeQyrx5HZltIVF7u0P9aSu9hFTkTezIbAuEVOYl\npCIvIWVws0WDaeu8hFTizezIbAup2q89Okxb5SWkAm9qR2ZbyNV+btJi2hovIW17czsy2wIh\nlXkJadtLSGkQ0olDSu7IbAvJ2t/L9Ji2wktIW97sjsy2QEhlXkLa8hJSKlMf7UtXLSEleAkp\nl6mP9qWnlpDi3vSOzLaQr536aF86agkp7M3vyGwLHbRTH+1LPy0hRb0dOjLbAiGVeQlp1UtI\nPbST1bRlXkJa8/boyGwLXbST1bRFXkJa8XbpyGwLhFTmJaRl+nRktoU+2slqWkKKQUjdtIRE\nSGG8ttBJ67VbQopg9lnTTGv1909CCuD2F2I3rdMzooTUjt3XOuy0Rl+jGxrSsWAb/TnojrlH\nusHwhZWGWpsXBPPQrhHHl/obagnp4CFZfvOZo9ble70IqQ1CGqU1eT8MQmrC830FPLUe79BE\nSC2YvmWUqdbizTcJqQHXt9V11Tq8HTQh1WP7Ru+2WoMfUEBI1fj+6BFfrf7PniKkWox/qpyv\nlpAOF5Lzzzk11sr/WFFCqoSQ9tGmlURIEdK0D+epPu6BtFklEVKELO3jaYqPeyhtUkmEFCFJ\n+3SW2uMeTJtTEiFFyNE+n6T0uIfTppRESBEytNPMOQqPe0Dt3AkkaHMgpEJmD1F33GNqE0oi\npAiEdBBtvCRCihDXzp+g7LiH1YZLIqQIUe3So3PRcY+sjf5FiZAiBLWLZ6c57sG1sZIIKUJM\nu3xykuMeXUtIKeM0EdGuPZYQHPcE2tCjO0KKEAqpkxdtuzZQEiFFaNeuf/aTG/cs2vY7JUKK\n0KzdOC+1cU+kbS2JkCI0ajc/72mNey5tY0mEFKFNu31UUuOeTdv28I6QIjRpC85JadwTaltK\nIqQIDdqiz3c6455T23CnREgRqrWFJ6Qy7nm11SkRUoRKbfHpaIx7am1tSYQUoU5bfjYS455d\nW5cSIUWo0daci8C4aCWOjJAekPj0hrZWW35qhBShVCvygBtttXbvv9YS0g2TylNAaBu0hadH\nSBE6fU1C5RpC+0HJERJShIKXmyi93gRto7bgGAkpwoa2MSOpawjtB1tnSUgR1rTNFW14A6AN\naVcPlJAiLGtjb0ojdw2hfWflkyMhRVjQRu6M1rxR0Ma1S2dLSBHmtOGKFrwJoE3Rzp4wIUV4\n0E5TRkXP3izQZmmfT5qQItxqkxp68iaCNlN73xIhRfjQTmn3RPfedNBma79OnpAiXPMb+vCm\nG9H2075fAz4hXV6Z+3inkDol9IHNNYT2N9Nun1MrQ7p8/uP+48EhTdPtxvb7NIRWUnt/eeR5\nV3+HT0jTDYnaZRyvIbS3LF4yQe/c7xANaXomQ1uF9TWE9p6ZCyr1O29zQvr2SsGfnvufWaBk\nGIAQfS5HrXukGrhHQttXa/zQrgZCQttXS0iKXrR2WkJS9KK10xKSohetnbbjKxsuNx8TEtpj\na8/yWrs+WrNx0fbTEpKiF62dlpAUvWjttISk6EVrpyUkRS9aOy0hKXrR2mkJSdGL1k5LSIpe\ntHZaQlL0orXTEpKiF62dlpAUvWjttISk6EVrpyUkRS9aOy0hKXrR2mkJSdGL1k47NKQCSt5p\nSAivcZm2IzXjEtIjXuMybUcIKYLXuEzbEUKK4DUu03aEkCJ4jcu0HRELCeD4EBJAAoQEkAAh\nASRASAAJjAnpsv1bZLh/J1ltnGZ1m/aNinGHhOS0v4f3NpfGaVa3ad+ouW5HhHRxWp/TcTvN\n6jbttfK6HRDSxWt9b5jMa3dpWk1bd90S0hwm8xJST9RCulyt1veGy7h+IRkNW3nddg/J77B9\nxvXbrc+wtbvtGdL7052XDzreTBafYzoM+45dSEaz1l63fB3pCZ9h3UIyGvUDkXukL5w2aDSr\nWUg+k/6GkNqxeST6htGoZpv9QC4kgINDSAAJEBJAAoQEkAAhASRASAAJEBJAAoQEkAAhASRA\nSAAJEBJAAoQEkAAhASRASL78Mf17vf47/dh7DrgSkjM/p+/X64+3mmB3CMmYv6Z//p7+3HsK\neIOQnLH7TrnjQkjO/D1Nf+89A7xDSM4QkgyE5Mzl+3ce2mlASMb8Nf3zz/TX3lPAG4Tky/vT\n39+nn3vPAVdCcubXF2T/2HsOuBISQAqEBJAAIQEkQEgACRASQAKEBJAAIQEkQEgACRASQAL/\nByZaqQOumOCvAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ggplot(data.frame(x=seq(-4, 4, 0.01)) %>% mutate(p=dnorm(x))) +\n", " aes(x=x, y=p) +\n", " geom_line()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is the _probability density function_ (PDF), and it corresponds to the probability distributions we saw in the discrete case. However, it is important to note that probability densities are **not** probabilities! CDF values are probabilities, but PDF values are not - they are the density of the probability in a small region surrounding the value.\n", "\n", "For a continuous probability distribution, the cumulative function $F$ and density function $D$ have the following relationship:\n", "\n", "$$\\begin{align*}\n", "D(x) = \\frac{d}{dx} F(x) \\\\\n", "F(x) = \\int_{-\\infty}^{x} D(t) dt\n", "\\end{align*}$$\n", "\n", "That is, the probability density is the derivative of the cumulative distribution function. $D(x)$ indicates how much of the probability gets added at $x$, roughly. But it is meaningless to ask about $P(X=x)$, as we discussed above, and the probability density can be quite large (greater than 1, even!). The probability density does, however, integrate to 1.\n", "\n", "Many natural phenomena follow normal distributions. Unfortunately, our weather doesn't quite. But we can try - let's look at some general statsitics of the weather data:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "55.1990360126144" ], "text/latex": [ "55.1990360126144" ], "text/markdown": [ "55.1990360126144" ], "text/plain": [ "[1] 55.19904" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "17.1580665383117" ], "text/latex": [ "17.1580665383117" ], "text/markdown": [ "17.1580665383117" ], "text/plain": [ "[1] 17.15807" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mean(day_weather$avg_temp)\n", "sd(day_weather$avg_temp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These are the mean and _standard deviation_ — a measure of how diffuse the values are — of the data. In its general form, the normal distribution is parameterized by mean and standard distribution, and we can use that to overlay a normal distribution on top of the data:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n" ] }, { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIcCAMAAAD7UX68AAAAPFBMVEUAAAAA/wAzMzNNTU1Z\nWVloaGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enr6+vw8PD////XVaVIAAAA\nCXBIWXMAABJ0AAASdAHeZh94AAAcc0lEQVR4nO2di3riug5Gw+b0Np1LW97/XQ/Q0gaIbMuW\nFdtZ6/v27JZh8keWVkMDhOkAAMVMa+8AwAggEoABiARgACIBGIBIAAYgEoABiARgACIBGGAl\n0vsdCzfVxDeOtD7TrOMQibRNpiFSvCTSSHOPQyTSNpmGSPGSSCPNPQ6RSNtkGiLFSyKNNPc4\nRCJtk2mIFC+JNNLc4xCJtE2mIVK8JNJIc49DJNI2mYZI8ZJII809DpFI22QaIsVLIo009zhE\nIm2TaYgUL4k00tzjEIm0TaYhUrwk0khzj0Mk0jaZhkjxkkgjzT0OkcrT/rdMpTRHRk5DpHhJ\n3mmI1GEaIsVL8k5DpA7TEClekncaInWYhkjxkrzTEKnDNESKl+SdhkgdpiFSvCTvNETqMA2R\n4iV5pyFSh2mIFC/JOw2ROkxDpHhJ3mmI1GEaIsVL8k5DpA7TEClekncaInWYhkjxkrzTEKnD\nNESKl+SdhkgdpiFSvCTvNETqMA2R4iV5pyFSh2mIFC/JOw2ROkxDpHhJ3mmI1GHa2iLtj9x+\nPb8NkRCpi7SVRdp///Hz9fw2REKkPtIQKV6SdxoidZjWoEiH+f8RCZG6SGtbpP+OpGxmLASR\n1t4tWIcCkTjZwBGpt7S2j0iIhEidpCFSvCTvNETqMK1BkThrh0j9pSFSvCTvNETqMK2VVzbs\n519zsgGRektbW6Q41Xc5WpJ3GiJ1mIZI8ZK80xCpwzREipfknYZIHaYhUrwk7zRE6jANkeIl\neachUodpiBQvyTsNkTpMQ6R4Sd5piNRhGiLFS/JOQ6QO0xApXpJ3GiJ1mIZI8ZK80xCpwzRE\nipfknYZIHaYhUrwk7zRE6jANkeIleachUodpiBQvyTsNkTpMQ6R4Sd5piNRhGiLFS/JOQ6QO\n0xApXpJ3GiJ1mIZI8ZK80xCpwzREipfknYZIHaYhUrwk7zRE6jANkeIleachUodpiBQvyTsN\nkTpMQ6R4Sd5piNRhGiLFS/JOQ6QO0xApXpJ3GiJ1mIZI8ZK80xCpwzREipfknYZIHaYhUrwk\n7zRE6jANkeIleachUodpiBQvyTsNkZIJLVXfY4JI5WmIlAwiIZKchkjJIBIiyWmIlAwiIZKc\nhkjJIBIiyWmIlAwiIZKchkjJIBIiyWmIlAwiIZKchkjJIBIiyWmIlAwiIZKchkjJIBIiyWmI\nlAwiIZKchkjJIBIiyWmIlAwiIZKchkjJIBIiyWmIlAwiIZKchkjJIBIiyWmIlAwiIZKchkjJ\nIBIiyWmIlAwiIZKchkjJIBIiyWmIlAwiIZKchkjJIBIiyWmIlAwiIZKchkjJIBIiyWmIlAwi\nIZKchkjJIBIiyWmIlAwiIZKchkjJIBIiyWmIlAwiIZKchkjJIBIiyWmIlAwigYwwHWvvVots\nYak4IuWmcURKhiMSIslpiJQMIiGSnIZIySASIslpiJQMIiGSnIZIySASIslpiJQMIiGSnIZI\nySASIslpiJQMIiGSnIZIySASIslpiJQMIiGSnIZIyQhL5biC3yBStCTvNERKBpEQSU5DpGQQ\nCZHkNERKBpEQSU5DpGQQCZHkNERKBpEQSU5DpGQQCZHkNERKBpEQSU5DpGQQCZHkNERKBpEQ\nSU5DpGQQCZHkNERKBpEQSU5DpGQQCZHktAZF2s2on5YOIiGSnNaUSPfy5AuFSIrNIVJxWhsi\nRXXR24RIis0hUnHa+iKlK6JyCZEUm0Ok4rSVRdIeZ9KtQyTF5hCpOG1VkbJOJiSqhEiKzSFS\ncdp6IhWck0v5l4ik2BwiFaetJVLJme33FAsRSbE5RCpOW0ekQo1StoFIis0hUnHaGiJZaBTd\nDiIpNodIxWkriGSk0XlT8rYQSbE5RCpO8xap6GU/C4ibQyTF5hCpOM1XJGOLzgjbRCTF5hCp\nOM1VpAoavUsPFRFJsTlEKk5zHIMahyN5w4ik2BwiFae5jcFuV7G2BZUQSbE5RCpO8xqDXeXa\n7k5iIJJic4hUnOY0Brv3+rVdm4RIis0hUnGayxh8Hi2q13Z1UEIkxeYQqTjNYwx232mVQaTM\nzSFScZrDGFzG26G22TEJkRSbQ6TitOpj8DPbLrXt6mmLSIgkp9Ueg9mjLafavlRCJMXmEKk4\nre4YVP71X0qtk4ZIiCSnVR2D2iekQ7mIpNgcIhWnVRyD+k+RytGIpNocIhWn1RuDu1fteNa2\nQyTN5hCpOK3aGHi8+i0Ub/8KWURCJDmt1hgszLFzbeYmIRIiyWmVxsDnjQ0h7N/9hEiIJKdV\nGYPlx1V5teXuICIpNodIxWk1xkCYYG+RrH9PQiREktMqjIE0v+4imV6wCJEQKZRmPwbi8K4g\nkqlJiIRIctrgIlk+vEMkRJLTrMfA/JKNhSIZHpQQCZHkNOMxsL+IcLFIZiYhEiLJabZjEJzZ\ntUSyMgmREElOsxyDKp8PYSCSkUmIhEhymuEY1PnEIguRbExCJESS0+zGIDqsK4pkYhIiXdgf\nuf16fhsiFYxBfFTXFMnCJES6uPP9x8/X89sQqWAMqn2qq5FIBiYhEiLJaUZjkDKm64pUbhIi\nBUQ6zP+PSCOLVGwSIqWJ9N+RlM2MhTAGuo3sdnV27oTJDn5SuJc6kcqy1qJIJE42FP48TXw9\n29pHpNJjkk6koqgYbR6REKlsDFLHc32Ryl7CikhhkWYeIVLGGCQPZwMiFR2UECko0twjRNKP\nQfpkNiFSgUmIFBLpyiNEUo+BYi7bECnfJET6Nunyaoafr/f7q5c2VN/laEneaYVjoJlKRDKD\n19pFS/JOKxsD1VA2IlK2SYiESHLaBkXKNQmREElOKxoD3UQ2I1KmSYiESHJayRgo57EdkfJM\nQiREktMKxkA7jQ2JlGUSIiGSnJY/BupZbEmkHJMQCZHktOwx0E8iIpmBSNGSvNNyxyBjEE1F\niu53LE1fACIhkpyWOQY5r/5sSyS9SYiESHJa3hhknfVqTCT1DwNEQiQ5LWsM8p6HaU0kbR2I\nhEhyGiJV35MKIFK0JO+0nDHIfIlNeyLpKkEkRJLTMsYg90WfDYqkqgWREElO049B9tsQWhRJ\nUw0iIZKcph6D/HeYNimSoh5EQiQ5TTsGBdc8aFOk9IoQCZHkNOUYlFyFp1GRkmtCJESS03Rj\nUHRhOEQyA5GiJXmnIVJyVYiESHKaagzKrlTarEiJdSESIslpmjHYlb0xvV2R0kzK3ZMKeIn0\n8OsvIqWlKcZgV3iFh4ZFSjIpd08q4CXSNE375z+IlJCWPganWSsampZFSjEpd08q4CXSx++n\no0vT4+83RIqkJY/BedKKhgaRzPD8HenPy/7o0oPuuFR9l6MleaeljsHnoBUNTdMiJZiUuycV\ncD3Z8PYynQ9LiBRKSxyDrzErGpq2RYqblLsnFXAU6d/T+XD093F6QqRAWuIYbECkqEm5e1IB\nN5H+PH4/qps0p8ar73K0JO+0tDG4zFjR0CCSGW6nv6fp6d/lr64/uAWRrtOSxuB7xIqGpnWR\nYibl7kkF3E5/v/w7ZFF9l6MleaeljMHPgBUNTfMiRS6HkrsnFXA7/Z2nESItjsFsuoqGpn2R\nwgel3D2pgN8Tsp//32se1iHS8hjMZ6toaHoQKWRS7p5UwEWk/TQDkSJp0TG4mqyioUEkM1xE\nep159IpIkbToGGxMpIBJuXtSAe+Hdmqq73K0JO+02Bhcz1XR0PQhkmxS7p5UgLdRREsq34Si\nsbJIF3Y73fiEIjsRSTSpqHhbXEQ6Ho42/TuSorFRkUo0QqR6IFK0pPJNKBobE6noeNStSJJJ\nRcXbwkO7aEnlm1A0NiJSmUaIVA9EipZUvglFYxFpmWWTioq3xU2k1/3h8Hfa/0KkYGPDIpV6\n1K9Iy68VKireFi+RXo+/HL2dnpjVmlR9l6MllW9C0digSIW/IN1HdiTS4kGpqHhb/F79/ff4\n3+s/1Su/EemaYo+6FmnBpKLibXF8QvbP9JDxxGz1XY6WVL4JRWNDIpV7hEjV8BJpP709T/9O\nvyUhUqixAZEMPOpbpHuTioq3xUukX6frcZ0OSC+IFGosIoW4NamoeFvcztq9TPs/xwOT1iNE\numDhUe8i3ZpUVLwtPI8ULal8E4rGSiKVn7BbikQkMxApWlL5JhSNFUSy0ah/kdJe+p5WvC1+\nD+32vNYuobHriKTYQfneRXuSTMqbsYwjk/AS6YUXrSY1dlkkK48QqRp+p7+1b41FpG+MfkG6\nj+xQpJQLVlhHpsA7ZKMllW9C0dglkcw0GkKkhEsomUcm4CXS05R5Qa7quxwtqXwTisYiUpzo\nRf3sI+N4ifS2f9R+oAsifWLoESJVw++hHScbUhqLSAnErtdcITIKIkVLKt+EorF3ItmdaFiI\n7FSk2CcI1IiMwROy0ZLKN6Fo7K1Ith6NIlLkM22qREZApGhJ5ZtQNPZOpLwxTZylbkUKf1xh\nncgwfiK9Ph0f1j2qP5Oi+i5HSyrfhKKxNyIZezSQSKEP0K0TGcZLpI+H8+9H0/RXa9IACI2N\n39vao4TI/Hub7EkyO/2elEauw41Iz9PL6UnZ37oPkD1s+4hk7tE4R6TPB3fOkSE8X9lw+Q+R\n5MYiUjI7REIksbFzkew9Gkqko0nukTJeIn09tHuZnhEp1NiZSBU8akgkC6q82TETt5MNX29H\n2mtfKFR9l6MllW9C0cEfkYyfQVqMRKT/9SbS4fDrYZoeXtQvXa2+y9GSyjeh6OC3SDU0Gk2k\nKtexyIQnZKMllW9C0cGLSHU8Gk2kGldWygSRoiWVb0LRwS+RKnk0nEgVLpqZiYtI889i5qxd\nsIOIpAORECkgUi2PxhPJ/nrombg9tHs6vbHv7fFJ6dEmRarm0YAimX/UTSbebzWftCZV3+Vo\nSeWbUHQQkdQYf/haJs4XP/ngoV24gyeR6nk0pEil61Xe3/lSGiGK9Dh9PrTjiBTu4OH0DoGy\nwVAMDSL9rzeR3nhlQ1IHD+8VNRpUpEKTyvs7X0ojRJEOHy+nVzb84pUN4Q4iUg5Fa1be3/lS\nGiGLlEv1XY6WVL4JRQcP2pc0Fw3NKCIVmVTe3/lSGoFISyg6iEh5FJhU3t/5UhqBSEukd3Cn\nfrda0dCMI1KBSeX9nS+lEYi0RHIHd4uXLDZEqC15B0P3Xplsk8r7O19KIxBpieQOIlI+iIRI\nF3bviJRPrknl/Z0vpRGItERiB3fviFQAIiHSmd1XWu4gZQzNUCLlvjm/vL/zpTQCkZZI6uDu\nkpY/SeqhGUukzGNSeX/nS2kEIi2R1EFEKgaREOny+QqIVEKWSeX9nS+lEYi0REIHL5/4g0hF\n5JhU3t/5UhqBSEvEO/j9GXSIVEaGSeX9nS+lEYi0RLSDP5+KikiF6E0q7+98KY1ApCWiHUQk\nMxCpK5F0PYnd+8cjRCrG6v1cScNxv5RGIFLGvWceIVI5RiYlDcf9UhqBSPp7zz1CJANWubY+\nIkVLWrpRt/jheyOSNWtcWx+RoiUt3ahb/OC9rzxCJAsQaYMiXXuESCZYXNEsaTjul9IIRFLe\n+8YjRDLC/ZLgiBQtaelG3eIH7o1IdUCkbYl06xEiWeF9bX1Eipa0dKNu8cV733mESFYg0oZE\nuvcIkcxw/pAKRIqWtHSjbvGlVi+nFQ5AEKG2tHtHymkN32vrI1K0pKUbdYsvdXo5raz/YYTa\n0u4dKac5yk6CJ4zG0lIagUjp917yCJEsQaQtiLRbvvY3IhnieG19RIqWtHSjSY+FtPJtWyGs\nyNq7pcDv2vqIFC1p6UaTFgtp5du2QliRtXdLASKNLtJOaBUi2eL2IRWIFC1p6UaT/gpppdu2\nQ1iRtXdLhde19REpWtLSjSbdFdIKt22IsCJr75YOp0uCI1K0pKUbTXorpJVt2xJhRdbeLSWZ\nJlmMST6IpOiskFa0bVOEFVl7t5Qg0qAifTdWSCvZti3Ciqy9W1pcLgmOSNGSlm40aauQVrBt\nY4QVWXu31HhcEhyRoiUt3VjQVETyx+GS4IgULWnpRpOeCmn527ZGWJG1dyuD+pcER6RoSUs3\nmnRUSMvetjnCiqy9Wxkg0mAiXTVUSMvdtj3Ciqy9Wzno31JhMSb5IJKinUJa5rYrIKzI2ruV\nBSLV3uUw6zZzZTzWxA3t4isHBZHCmLYSkdZEufrKQUGkMOs1sgHqr4krugYoB2VlkfZH7r/e\nz+5RfZfDrNbHFqi/Jr6oOqAclHVF2s+0+fl6P6RI/Xk0nEiqHigHpUGR9kMekTr0aDyRNF1Q\nDkqDIg350K5HjxBJQdMi/XckZTMVWaGD7VB5TdYgvQ+uYxaAI1Je/1qi7pqsQ3InlIPS9BFp\nGJH69AiRFCBSGN/mNUbNNVmN1GYoBwWRwrj2rjVqrsl6JL7ARDkoiBTGr3ENUm9N1iWpIcpB\naeSVDfvZ14OJ1K1GiKSB19qF8Wlao9Rak9VJaYpyUBApjEvPWqXWmqxPQleUg4JIYRw61i6V\n1qQF4n1RDgoihaner5apsyZNgEiI5EedNWmDaGeUg4JIYSp3q22qrEkrxHqjHBREClO1V61T\nY03aIdId5aAgUpiKnWqfCmvSEuH+KAcFkcJU61MP2K9JWwQ7pBwURApTqUt9YL4mrRHqkXJQ\nEClMlR71gvWatEegS8pBQaQwFTrUD8Zr0iJyn5SDgkhhzPvTE7Zr0iZip5SDgkhhjLvTF6Zr\n0ipSr5SDgkhhTHvTG5Zr0i5Ct5SDgkhhLFsDTWJzJWNEClO/M7A2JlcyRqQwGW3Bo96wuJIx\nIoWp2hRoBIMLsCJSmIotgXZIb5s0KIgUpl5HoCWSH5BLg4JIYbT90DYQWiGxddKgIFKYKs2A\nBkGkqtToBTRJ2QVYESmMfSegVYquG4lIYaz7AA1Tct1IRApj2wVoGkSqR3IP8GgACi7Aikhh\n7DoAHZB/3UhECmO1/tAH2deNRKQwNqsP3RB7jC4NCiKFSVt8gwZCK+Rd7g6RwqQsPB6NRdbl\n7hApTOGyQ4/kXO4OkcIULTr0CSLZU7Lm0CuBR+vSoCBSmOiSmzYQWkF9uTtECpO73tA52svd\nIVKYvNWG/lFe7g6RwuSsNQzBcnelQUGkMPqVhlFY7K80KIgURrvOMBBLHZYGBZHCyIuMR+Oz\n0GNpUBApjGKJYTzuf1xKg4JIYaQFrtxAaIXbTkuDgkhh0lYXxuWm19KgIFKYlLWFobnutjQo\niBQmvrIwOlf9lgYFkcLE1hU2wLzj0qAgUpjwqsI2mPVcGhREChNaU9gMP12XBgWRwtwuKB5t\nk+++S4OCSGGE5YStcWm9NCiIFGZxMWGDfD0YkQYFkcJcLeUqDYRWOPdfGhRECnO7jrBhThMg\nDQoihflZRDyCHSLlMltCgN1OGhRECnNZwFXbB+0gmYRIYb5Wb93mQTu8CyYhUpjz4uERXHgX\nTEKkMKe1wyP45l0wqXmRVobTdXDFaSh2O8cJHOSIhEZwxddY1J7K0URCI7jmMhiVp3IwkXbJ\nn2oOG+FnNKpO5VAinZ59W7tv0Bg/01F1KkcS6bxSa/cNGmM2H1cqIZLE5zKt3TdojPsRqTKV\nw4h0+XGzdt+gMa6npNpUjiLS9wqt3TdojJs5+R4URFri5yfN2n2DxpBGBZHumf8WuXbfoDGk\naUGkO65OxqzdN2gMYWDS753GACJdPz/g2iRon8WREZ+4z57C7kW6fQuka5OgfYSxUd07gd5F\nunsJlWuToH2kwdF9dHOUvkVaeEe+c5ugdYTRUX4GepSeRVq8sIVzm6B1hOER3reWPYwdi7T8\nDmL3RkHbCNNz+qsFlbKnsVuRpOssuTcK2kaYn8+/TP7o5ii9iiRersy7T9A44Tm5PShlD2Sf\nIsmX/UMkuCY2J9cqZY9kjyIFNEIkuCE+J7uEz/eL0qFIIY0QCW5ImZP45/tF6U6k4OHoHZHg\nhqQ52cU+lixKbyJFNEIkuCFxTiIfSxalL5Fih6N3RIJcgh9LFqUnkRI0QiTIZhf4NKUoHYmU\nohEiQQFJP6qX6Uak1BrX7gV0TbZKnYiUXt/anYCu0YzaFV2IpKlt7U5A12jH7ZsORNLVtXYn\noGtyRu5M8yJpa1q7E9A1uWPXuEg7/Y+GtTsBXZM9qi2LlPVYde1OQNdkjmrLImWePVm7E9A1\nWTN3olWRss/nr90J6JrMqWtVpIJnmNfuBHRN9tw1KFLGGYYZa3cCuiZ77loS6VzJ/ZVdQvcG\nMCXXo8ZE2i1da0y8N4A1uR41JZLuKrLOKwybINejdkRaPBiFanNdX9gInYv0eX5BV5vr+sJG\n6FqkyOcoIxK40a9Is5Pdutpc1xc2Qq8iXT1lpKvNdX1hI/QqUooaunsDFJDrESIBzMj1CJEA\nZuR6hEgAM3I9QiSAGbkeIRLAjFyPEAlgRq5H64i09moB6EAkAAMQCcAARAIwAJEADEAkAAMQ\nCcAARAIwAJEADEAkAAPsRdofuf16fhsiwYCYi7T//uPn6/ltiAQjgkgABiASgAHeIv13JGUz\nAMPieESqi28caX2mWcchEmmbTEOkeEmkkeYeh0ikbTINkeIlkUaae5xSpJ9XM8y/1r6yoS4j\nt5+0VuO0IsWpvsvRkkgjzT0OkUjbZBoixUsijTT3OEQibZNpiBQviTTS3OMQibRNpiFSvCTS\nSHOPQyTSNpmGSPGSSCPNPQ6RSNtkGiLFSyKNNPc4RCJtk2mIFC+JNNLc4xCJtE2mIVK8JNJI\nc4+zF2l1Rr6OEbW1DyJ1ALW1DyJ1ALW1DyJ1ALW1zzAiAawJIgEYgEgABiASgAGIBGAAIgEY\nMIBI80u/7mN37oxLTaOWdqmt/+L6F+nnWsor70gNbi64Phzj9A2RmmZwkQaqq3+RzuxH6cc1\n+/n/ByxwoJ9/A4k0xEPta75/jTgchpm4GSP9ajuGSKMOm/BhVKOwv/6ja8YR6fqLgRhcpJuv\nemUIkUZqyD3DirRf/LJTRhBp//Nn/w25YuyHdkP1bQCRZqeI++/HNfvZf8MVNxNpgNL6F2k/\n8LP/wgf2DsLlJ+AQtfUvEkADIBKAAYgEYAAiARiASAAGIBKAAYgEYAAiARiASAAGIBKAAYg0\nAK8DvMSmdxBpACa6uDq0YAAQaX1oQdP8fZqm/cvhY3o4f/sw/Tu8PU4Pf67Umabztx/P0/T8\ncf7+8DQ9Hd4epqePr+8e39bY+y2BSC3zZzrzclThZMLb0aeP/edts3t9fXv+i4fz90f9pt8P\nxz+eT98dBZv2H+tUsBkQqWUept+Hw7+jJn+OMh0OL9Ofw6/p8fDxeP1g7vzdr9NdXqbXszqH\n3yf9fp/+YpoePw6P538P9UCktnn78+tszcPnWxdPbr2dDk33Ij2cbzo+pDt++3b64/Nh3fG/\nf5/HMqgJIjXN4+Vx3Ov09/B3+nU5sbAg0jRd7vv17eEi0v0/AHNY35Z5nh5e/5wPPx/Hh2sv\nl4MMIrUH69syn2fjzn8+T2+nh22xh3bf385EOv+DR8/93iCI1DLT8QHd15mFv9Ppm9PphMfz\nI77ru53/4uVw+H3621uRzmcnfq2w+1sCkVrmZfo51/3web5g4fT30ZX991/8WxBpOt8BaoJI\nTfN81ODvpzWvp1PhR05PyP6+Fun17Mnb+c6HhYd2j9MzT8hWBpG6RHGE4TSDC6xyZ5x/U3o5\nvWQh+R9U3Bu4wCp3xtevTW/fp7tjoiCSC6xyb7w+TOdfeRCpKVhlAAMQCcAARAIwAJEADEAk\nAAMQCcAARAIwAJEADPg/2TBnTvwAfZwAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ggplot(day_weather %>% filter(origin == 'EWR')) +\n", " aes(x=avg_temp) +\n", " geom_histogram(mapping=aes(y=..density..)) +\n", " geom_line(mapping=aes(y=dnorm(avg_temp, 55.199, 17.158)), color=\"green\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Not a great fit, but not abjectly awful. Many natural processes will follow a normal distribution more or less well." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## R Distribution Functions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each probability distribution in R has 4 functions:\n", "\n", "- `p`, the cumulative distribution function (`p` is for _probability_)\n", "- `d`, the density function\n", "- `q`, the _quantile_ function. This takes a probability and returns the value $x$ such that $F(x) = p$.\n", "- `r`, the function to draw random values\n", "\n", "So, for the normal distribution, we have already seen `p` and `d`; with `q`, we can ask for the value at the 75% point:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "0.674489750196082" ], "text/latex": [ "0.674489750196082" ], "text/markdown": [ "0.674489750196082" ], "text/plain": [ "[1] 0.6744898" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qnorm(0.75, 0, 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we have a _standard normal_ variable (its mean is 0 and its standard deviation is 1), we expect 75% of its observed values to be less than or equal to 0.6745.\n", "\n", "We can also draw a number of values:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. -0.193278278020237
  2. \n", "\t
  3. 0.830826332927208
  4. \n", "\t
  5. 0.23982529777609
  6. \n", "\t
  7. -0.787180493695293
  8. \n", "\t
  9. 0.115179828829201
  10. \n", "\t
  11. 0.665083208789069
  12. \n", "\t
  13. 0.338558617705704
  14. \n", "\t
  15. 1.47080674791769
  16. \n", "\t
  17. -2.2951772420096
  18. \n", "\t
  19. -1.14782251522738
  20. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item -0.193278278020237\n", "\\item 0.830826332927208\n", "\\item 0.23982529777609\n", "\\item -0.787180493695293\n", "\\item 0.115179828829201\n", "\\item 0.665083208789069\n", "\\item 0.338558617705704\n", "\\item 1.47080674791769\n", "\\item -2.2951772420096\n", "\\item -1.14782251522738\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. -0.193278278020237\n", "2. 0.830826332927208\n", "3. 0.23982529777609\n", "4. -0.787180493695293\n", "5. 0.115179828829201\n", "6. 0.665083208789069\n", "7. 0.338558617705704\n", "8. 1.47080674791769\n", "9. -2.2951772420096\n", "10. -1.14782251522738\n", "\n", "\n" ], "text/plain": [ " [1] -0.1932783 0.8308263 0.2398253 -0.7871805 0.1151798 0.6650832\n", " [7] 0.3385586 1.4708067 -2.2951772 -1.1478225" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rnorm(10, 0, 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can use this to plot things!" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.\n" ] }, { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIcCAMAAAD7UX68AAAAPFBMVEUAAAAA/wAzMzNNTU1Z\nWVloaGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enr6+vw8PD////XVaVIAAAA\nCXBIWXMAABJ0AAASdAHeZh94AAAaqElEQVR4nO2di3LbOhIFxciO4+QmseP//9ert/gACIAz\nBAZAd9VmvWt5DoGZLsqyRB6+AEDMofQBALQAIgEogEgACiASgAKIBKAAIgEogEgACiASgAJS\nkT63I/lZizksyHqOfhAi1RzEgswEIVLNQSzITBAi1RzEgswEIVLNQSzITBAi1RzEgswEIVLN\nQSzITJCeSADwxRmpxiAWZCYIkWoOYkFmghCp5iAWZCYIkWoOYkFmghCp5iAWZCYIkWoOYkFm\nghCp5iAWZCYIkWoOYkFmghCp5iAWZCYIkWoOYkFmghCp5iAWZCYIkWoOYkFmghCp5iAWZCYI\nkaoLenGzZyQdChdEpNqCEMliECJVF4RIFoMQqbogRLIYhEjVBSGSxSBEqi4IkSwGIVJ1QYhk\nMQiRqgtCJItBiFRdECJZDEKk6oIQyWIQIlUXhEgWgxCpuiBEshiESNUFIZLFIESqLgiRLAYh\nUnVBiGQxCJGqC0Iki0GIVF0QIlkMQqTqghDJYhAiVReESBaDEKm6IESyGIRI1QUhksUgRKou\nCJEsBiFSdUGIZDEIkaoLQiSLQYhUXRAiWQxCpOqCEMliECJVF4RIFoMQqbogRLIYhEjVBSGS\nxSBEqi4IkSwGIVJ1QYhkMQiRqgtCJItBqSIdT4z/JyJlD0Iki0GJIh2n9hwRKX8QIlkMEol0\n5IxUIAiRLAZJRDry1K5EECJZDNIR6duJmB8HBTwilT4suJEs0vGLM1KJoLs5ww3OSBaCtos0\ne90BkXIF3R0a+4RIpYMEIl1BpNxBI4leRmenPSPpULjgZpG+Zl9KDkJtOTZydg1aWnR3acdQ\nOhQsiEg1BZ3PPN5X7XZUiQ4FC6aJ9Hhnw+gFB0TKFXQ1ZeXl791UokPBgoki+ZEchNpybOTs\nFHTTZEWk3UyiQ8GCiFRJ0OP1hDWR9lKJDgULIlIdQU9B1kXaxyQ6FCyISFUEjfQIiLSLSnQo\nWBCRaggauxEUaQeT6FCwICLZD5qKERbp9BO6B0CHwgURyXzQ7AQTJZKySXQoWBCRrAfNpYgR\nSfucRIeCBRHJeNDi5BInkq5JdChYEJFsBy2fpMWKpGkSHQoWRCTTQQ4bIkVSPSfRoWBBRLIc\n5DqtxIukZxIdChZEJMtBLhWiRVI0iQ4FCyKS4SCnCPEi6T27o0PBgohkN8itQZJISibRoWBB\nRDIb5JEgRSQtk+hQsCAiWQ3yfKTch6+Kikl0KFgQkYwG+a7NkCiSzq9JdChYEJFsBnmvzZAq\nkopJdChYEJFsBimKpGASHQoWRCSTQYP3RYV0vxRMokPBgohkMeg8+moiKTy5o0PBgohkMGjQ\nFUluEh0KFkQke0Gr16/bJJLUJDoULIhI9oJWr1+3RSTxKYkOBQsikrmg9evXbRJJahIdChZE\nJGtBgQtBbhNJaBIdChZEJGtB95FHpJqCEMlaUOiKqhtFkplEh4IFEclYkLJITybv3cu4IIs5\niCSihjYFL028XaSxSfkWZDIHkURU0KbwpYkFJiHSfkGIZCpo/IuMukhjk3ItyGgOIokw36aY\na3wjkskgRLIUtLNII5MyLSgV8x3yF0QkQ0F7i/Q0KdOCUjHfIX9BRLITFHXXCZlId5PyLCgZ\n6x1aKYhIZoLi7johNAmR9glCJDNBkXedEIo0INIuQYhkJiiLSC+ItE8QIlkJir19i45JGRa0\nBdMdWi+ISEaCsok0IBIiyTDdplwivSDSHkF6IoGIYfH/7CpSgRX2AmekkkHxNxTTMWn3BW3D\ncIdCBRHJQlDCnfkQyWQQIlkISrmhmI5JOy9oK2Y7FC6ISPmCPHOdXaSTSToLUqd0hwQFESlf\nkE+kpDvzIZLJIETKGGRGpJfUK6H00iFBQUTKF2RIpESTeumQoCAi5QvyTXXSo5VMUlmQOqU7\nJCiISPmCDImUeJm7XjokKIhI+YKSPEKkqoIQKWOQJZHSTOqlQ4KCiJQvyO2R76VoRKopCJEy\nBrk9KiRSkkm9dEhQEJHyBSGSlRxEElG6TS6PyomUYlIvHRIURKR8QS6RXgqKFG9SLx0SFESk\nfEEOj0qKlHBK6qVDgoKIlC/IIdJjqGMejUh2gxApY9DSo7IixZvUS4cEBREpX9BSpNFQhx+N\nSIaDECljkNujgiJFm9RLhwQFESlfECJZyUEkEaXbZE+kWJN66ZCgICLlC3J7VFSkSJN66ZCg\nICLlC5p5hEjFchBJROk2zURaDPXao/cSKc6kXjokKIhI+YLcHiFS/hxEElG6TSZFijKplw4J\nCiJSviBEspKDSCJKt8ntUXGRIkzqpUOCgoiUL2jskR2RYk5JvXRIUBCR8gWNRfIMtfvRiGQ+\nCJEyBo08siRShEm9dEhQEJHyBY1E8g6169GIZD8IkTIGWRUpbFIvHRIURKR8QW6PDIgUNKmX\nDgkKIlK+ILdHiJQ/B5FElG6TYZECJvXSIUFBRMoX5PbIgkihU1IvHRIURKR8QYgUonSHBAUR\nKV/QzSOLIgVM6qVDgoKIlC/oJlJwqMePRqQ6ghApY5BlkdZN6qVDgoKIlC/I7ZEpkTwP76VD\ngoKIlC/oMpNWRbqa5Hl4Lx0SFEwU6XjC9TUiRQSdR3LpESI9Kd0hQcE0kY6Pf6ZfI1JM0Hkk\n7Yp0Mcnz8F46JCiISPmCXpweIdKT0h0SFNwu0tf0a8lBqC3HRk6lIp1N8jy8lw4JCqqI9O1E\nzI93jtujF++jd8SZOHhD99uT9tggEi82pAV5RPIU2VEjX+bAGWlzQYlIXzy1Swpye4RIT0p3\nSFAQkfIFeUQqgefAfQfYS4cEBbeLxKt2qUF2PEIk9YKIlC8IkUKU7pCgYJpIj3czHEdfI1Jc\n0OLzEwXxHbnnEDvpkKRgokh+JAehthwbOT6R8rqyiu/IEWlrQUTKFeR9SawEviP3vB7SR4dE\nBREpVxAihUEkRAoG1SGS580X++3VBERCpFCQ/41sJfAdOSJtLYhImYJqEclpUhcdkhVEpDxB\nAyJFgEiItB609vHTEviO/AWRNhZEpCxBFYnkMqmDDkkLIlKWoJpEcpjUQYekBREpR9CASFEg\nEiKtBq1eNK4EviO/fBORNhREpAxBt6uY5rZlBd+RX7+7MKn5DskLIlKGIESKBJEQacx8Di29\n7/vK+pEjUnpBRNqB+RzWJtLigJvrECJJKCWSPY8QSb0gIu3AbAzrE2l+yM11CJEkFBLJoEeI\npF4QkQREzaylSzXEMz3oajuULQiRJGwYyVpApMSCiCQgfSKrYXoerbZD2YIQSULURO4z6LuD\nSGkFEUlA6jzWBCKlFUQkAanzWBXjI6+2Q9mCEElC4jjWBSIlFUQkAYnjWBmjQ6+2Q9mCEElC\n0jBWByKlFEQkAUnDWB/Pg6+2Q9mCEElCwijWCCIlFEQkAQmjWCWPw6+2Q9mCEElC9CBWCiLF\nF0QkAdGDWCv3BVTboWxBiCQhdg6rBZGiCyKSgMgxrBdEii6ISAIix7BibkuotkPZghBJQtQQ\nVg0ixRZEJAExM1g511VU26FsQYgkIWIEaweRIgsikoCIEayd6ydlq+1QtiBEkrA6gXkGfXcQ\nKa4gIgkIDmALnBdSbYeyBSGShMD4tQEiRRVUE6lHAuPXBheRIBrOSOkExq8RBs5IEQURScDq\n8DUDIsUURCQBq8PXDIgUU9An0uvPP4gUYm322gGRYgr6RDocDscfvxFplbXZa4gBkcIFfSL9\n++/t5NLh+38fiOTFP3lNgUgRBX0infn9fjy59Bp3XpIchNpyMuf4J68thmo7lC1oVaSvj/fD\n5bSESG68g5dzynMwaO+chzZF+vt2OR39+X54QyQnvrHLOuQ5QKRgQa9Iv78/ntUdYl4alxyE\n2nIy5/jGLuuQ5wCRggV9Ir0eDm9/7986IpITz9TlHfIcfGUyqUGRDu9/v5KQHITacjLnuKcO\nkTbToEj/0jRCpAcNevTy9ZnHpAZFuv9edIx5WodIIxBpO62JdDyMQCQvzqFrU6Q8JrUm0q+R\nR78QyYtr5lr0CJHCBZ0ifUW+5I1IC5r06PIWoRwmNShSMpKDUFtO5hzHyCGShNZEOp2O+B0p\nAsfINSxSBpMQCZGutOnR9d3fiLRW0CnSFiQHobaczDnLiWtapP1NQiREujC0LFKGU1KLIv06\nfn39ORx/IpKfxcA16hEihQv6RPp1+uXo4/yH2ViTJAehtpzMOYuBQyQZDYr0evhz+s+vv1Hv\n/EakG22LtL9JDYp0OiH9Prwm/GFWchBqy8mcM5+3Vj1CpHBBn0jHw8ePw9/zb0mI5GU2bs16\n9Lj4yd4mNSjSz/P1uM4npHdE8jIbt/ZF2tukBkX6ej8cf59OTLEeIVLDHiFSuKBXpFQkB6G2\nnMw502lDJDGIhEh9iLSzSS2K9H7kvXYhJsPWsEeIFC7oE+mdN62GmQxbHyLta1KDIh2jPxqL\nSBda9giRwgV9IvEJ2QjGs9aLSLua1KBIb4fEC3JJDkJtOZlzRqPW6vu+ryBSsKBPpI/j99gb\nuiDSS+MnJEQKF/SJxCdkIxiNGiJpgEi9i9S2R9Mbje1oUoMiJSM5CLXlZM55ThoiqYBInYvU\n9ksN85sx72dSkyL9ejs9rfsefU8KyUGoLSdzzmPQGvdofg/Z3UxqUKR/r5ffjw6HP4jk5T5n\nrXuESOGCPpF+HN7Pf5T9L+4GsojUNogULOgT6fxq3f0/iOThNmbNezQXaTeT+hHpeHzeMGn8\nNSI1DSIFC/pEuj21ez/8mHj0+Gf6NSK1zWLndjKpQZH+3T6OdJy8UahXkVanrH2PEClc0CfS\n19fP18Ph9X361tWZPIh0BpHUaFIkFx6Rvp2I+fFqWZ2yHkRaMORvQiVsEqmXFxvWhqwDj5Zn\npJ3OSa2dkcb3Yp4IhkhLEEmPXkUaP8mTHITacvbKWZmxHjxCpHBBp0hn3s4f7Pv4/jb5P6ci\nTa5mLDkIteXsleMfsdbfrnrFtXN7mNSgSPePmh8mJk1Eml4VXHIQasvZK8c/Yl14hEjhgj6R\nbk/p/nne2XC8fnns/eXvPjxyM7wo9uZKgyJ9P1yf2k3PSCtIDkJtOXvlrAxTvyDSuKBPpA/n\nOxsQaTFMHaP/5K5Bkb7+vZ/f2fAz+qJckoNQW85eOd5Ryjm35kCkUUGvSKlIDkJtOXvleEcp\n59yaA5FGBREpBt8kZZ1be6ibhEiI1COI9CyISDF45qh3kdT/loRIfYqUd2ztgUjPgogUg3uO\nEEnbJETqUaTuPUKkUUFEisE1Rd3/hnQWSdkkROpRpNxja49PRHoURKQYXFOESJf32qmahEj9\niYRHiDQuiEgxLGcIj14QaVwQkWJYzhAivVxFUjUJkXoTCY/OXPZmUDQJkRCpR66bg0ifiBTJ\nYoQQ6cxtd/RMQiRE6pHb7iASIkUynyA8unDbHURCpEhmA4RHV+7bo2YSIiFSj9y3B5EQKY7Z\nACHSlfv2IBIixTGdHzy68dgfLZMQCZF65LE/iIRIUUzGB4/uPDdIySREQqQeeW4QIiFSDOPp\nwaMHox3SMQmREKlHRjuESIgUwWh48OjJeItUTEIkROqRyR5pmIRI3YiERyMme4RIiBTkOTuI\nNGK6SQomIVIvInExuzHTTUIkRArxGB08GjPbJblJiNSJSJyQJsx2CZEQKcB9cvBowmyXEAmR\nAtwGB4+mzLdJbBIiIVKPLPZJahIiIVKPLPYJkRBplevc4NGMxT4hEiKtchkbXrKbs9wooUmI\n1DjnqUGjBY6dGrL3xhqckVY4Tw0iLXDslOyUxBkJkXrEtVUikxAJkXrEtVWIhEh+XvDIhWur\nRHd5QaTmRcIjB869QiRE8oJITtybJTAJkVoXCY9cuDcLkRDJBx458e3W5n1GJETqEd9ubd5n\nRGpbJDxy49uurfuMSIjUJd792rrRiIRIPeLfsI0bjUhNizQsb8YMZ1Z2bBuIhEg9srZlm0Ck\nlkUalnc1hwure5axQwaCECkMIvlY37R8HTIQhEhBziNRemKNEti1XB2yEIRIQRDJS2jbMnXI\nQhAihbgMROmJrYvnvmXpkIkgRApwnYfSo1kX453bv0ObQCQJiJSH8c7t36FNIJKEDTm3aSg9\nmnUx3budO7QNRJKASHmY7t3OHdoGIklIz7nPQunRrIv57u3ZoY0gkgREysN89/bs0EYQSUJy\nzmMSSo9mXSz3b7cObQWRJKTmPOeg9GjWhWMDd+rQZhBJAiLlwbWD+3RoM4gkITFnNAWlR7Mu\nnFu4R4e2g0gSECkP7j3coUPbQSQJaTnjGSg9mnXh2UT1DglAJAlJOZMRKD2adeHdRt0OSUAk\nCYiUB/8+qnZIAiJJQKQ8+PdRtUMSEElCSs60/6VHsy7WdlKvQyIQSUJCzqz7pUezLtb3UqlD\nMhBJAiLlYX0vlTokA5EkxOfMe196NOsitJsaHRKCSBIQKQ/B7VTokBBEkhCds2h86dGsi/B+\nijskBZEkxOYs+156NOsiZkdlHRKDSBIQKQ8xOyrrkBhEkhCZ4+h66dGsi7g9FXRIDiJJQKQ8\nRG7q9g7JQSQJcTmulpcezbqI3dWtHVKguEjHE6P/1ZxILy/cnU+Mc2ejTOpGpONEn2ODIuGR\nHOfOIpJXpGOLZyREkuPe2hiT+hSpxad2eKSAZ2t1OqSDUZG+nYj5cfsgkgK+vc3ayWJwRvrk\nhKSDd3cVOqSE0TMSIsEI//bKO6QEIkkI5gz8wUiDlf2VdkgLRJIQyuH25Tqs7rCoQ2ogkgRE\nyoNvfz1/7U7okBqlRXq8s+HYoEjcvlwJ3wa/uE2K75AexUXyIzkIteVIcrh9uRa+HT5/z2FS\ndIcUQSQJiJQH3w5fvrk0KbpDiiCShNUcbl+uhm+LL99EpLZEmneTvyDp4dv/63cXO+3p0K4g\nkgREyoNv/6/fRaSWRcIjRXz7f/v2fK89HdoVRJKASHnw7f/9+4P34YhUuUh4lJNhut0FJgGR\nRHhFwqO8IBIigQaTDS8wCYgkwicSHmVnvOUFJgGRRHhEwqP8IFJ7Ig2IVIDRpheYBEQS4RQJ\njcrw3PcCk4BIIhDJEo+NLzAJiCTCJRIelQKRWhIJj8px3/sCk4BIIpYi4VFJbrtfYBIQScRC\nJDwqy3X/C0wCIolAJGtcGlBgEhBJxFwkPCoNIrUgEh6V59yDApOASCIQyR4DItUuEh6ZYECk\nukXCIyMMng5lGwWdgr2KhEdmGNwdyjYKOgURCQqDSBWLhEd2GN2jApEqE4kbIRnicxiWHco2\nCloFuxSJ+7dY4vN53yREMiuSq3M8rzPFJyLVKRIe2eLcpmH/SZiASKks+4ZHxrj0adh9EiYg\nUiqLtuGRNa6NGvaehAmIlMq8a3hklZVr6+uDSKmE2gVm8F9bXx9ESmW9WWAJ7yXB9UGkVNZa\nBcbwXRJcH0RKxd8osIfnSsb6IFIq4y7hkXncVzLWB5FScfYIzOK8krE+iJSKo0NgGdcFWPUx\nLJJRFv0B2zwaVXpyttL2GQmPqsFxJWN9DJ+RJAehtpwls+6AfZZXMtYHkVKZ9AaqYJhfN1If\nRErl2pmicwHJzK4bqQ8ipfLC349qZECkLQehtpwlnI7qZECkDQehtpwleFQpQ7i3AhApFTyq\nlV1NQqQ0+PWoXkZX6dIHkZLgslsV8/n5uZ9JiJTCuQ+lxwG2cu/gLiBSApculB4H2Mq1hzup\nhEjxXFtQehxgK5M2aoNIXuZ94GWGyrk3dheTEMnLtAu8XFc9j87u8fQOkbyMe4BGDTDqrb5J\niORl1AI0aoFRbxEp8iA0VvLsAB41wbi56s/uEMnLff95WtcI0/Yqq4RIXq67j0bNMG+wqkqI\n5OWy+WjUDssWK5qESF5eOB21haPHeiclRPLC6agHtD7vh0heOB11gdJJCZF8oFEn6Dy/QyQ3\np80t3WDIw6fKr0qI5GLgg0f98Oy4BERyvM2bZ3U9cZsCoUqIxNu8O+cxByKVEGl26zA06o3R\nJAhUQqTxHY+wqEMms7BZJUR63l8CjbpkNg0bVUKkq0g8p+uWxTwMW1xCpMt7gbCoX1wjka4S\nIn1yMuob71TsN3JRBSsTibcw9M7KaCS41JVIy03kZARrOJ6tpI2cYIarEWngOR2EmU9J2sgJ\nZrgGkQYkgngm05I2coIZti4SDsEGHlOTNnKCGc4pkmfRXpGQCLazOj39iIREIMf7S0EPIl0W\nzyeMQIvBoVPbIj0UWn04wAamOrUq0kwhRIJ9GG4UF+l4wvX1NpHuy3L/SbrAPkMnDO7R8z1c\nXaTj45/p10kiPRdxO8rodzYA6PAcuYlSvoebE8n5KgoiQW58LxR7Xik2J5L7KBEJMpM4crlE\n+nYi5scBmifDGclrs+BnLeawIOs5xd8ihEimgliQmSBEqjmIBZkJQqSag1iQmSBEqjmIBZkJ\nShTp8W6G4+hrRCoVxILMBKWK5EdyEGrLsZHDgqznIJKIettUOIcFhQsiUsVBLMhMECLVHMSC\nzAQhUs1BLMhMECLVHMSCzAQhUs1BLMhMECLVHMSCzAQhUs1BLMhMECLVHMSCzAQhUs1BLMhM\nECLVHMSCzAQhUs1BLMhMECLVHMSCzAQhUs1BLMhMkJ5IFdDclY5YkEEQqT5YkEEQqT5YkEEQ\nqT5YkEEQqT5YkEE6EAlgfxAJQAFEAlAAkQAUQCQABToQaXpp2OppbDmtLKh9kWYXK6+dxpbT\nzIIQqTIaW04zC2pfpAv1N+pOI3M3o/4FIVJlIJJN+hCp/j49aFKkBtaDSJWBSDZpWaTH66oN\n9OlBiyK1sJyWRbrTQp8eNChSE6vpQKQm+vSgPZHaWEz7Ih2Pbfzp/E5bq2mmP+2LBJABRAJQ\nAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRAJQAJEAFEAkAAUQCUABRKqVf4fXy3+/Hv4W\nPhL4QqSKeTt8nP79uPkEZUGkavl9eD/9+374XfpA4AuRaub1/HG4Bj4T1wSIVC+/Dn++/hx+\nlj4MOINI9fLv8OP0zO5f6cOAM4hUMT8OH4e30gcBFxCpYv4cDqdnd2ABRKqZV177tgIi1cyv\nw3+lDwGuIBKAAogEoAAiASiASAAKIBKAAogEoAAiASiASAAKIBKAAv8D8QifFBx8sWQAAAAA\nSUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ggplot(data.frame(v=rnorm(1000, 0, 1))) +\n", " aes(x=v) +\n", " geom_histogram(mapping = aes(y=..density..)) +\n", " geom_line(mapping=aes(y=dnorm(v, 0, 1)), color=\"green\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that our random values are, in fact, distributed as more or less as we would expect." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exponential Distributions\n", "\n", "The _exponential_ distribution is one of several probability distributions over non-negative integers where most values are small, and values become more likely the larger they get. Here's one exponential CDF:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIcCAMAAAD7UX68AAAAMFBMVEUAAAAzMzNNTU1oaGh8\nfHyMjIyampqnp6eysrLHx8fQ0NDh4eHp6enr6+vw8PD////ZB0PiAAAACXBIWXMAABJ0AAAS\ndAHeZh94AAATeElEQVR4nO2d21YbVxQEx2OSOBeb///bYGNAErrMTO+tOd2qenBkVlblZJqy\nQBbS9AwAMtPeBwBIgJAACiAkgAIICaAAQgIogJAACiAkgAIICaCAqpC+32bJv7MeJ6vVYZ2s\nux2WkHaxWh3WyUpIOk5Wq8M6WQlJx8lqdVgnKyHpOFmtDutkJSQdJ6vVYZ2shKTjZLU6rJOV\nkHScrFaHdbISko6T1eqwTlZC0nGyWh3WyUpIOk5Wq8M6WQlJx8lqdVgnKyHpOFmtDutkJSQd\nJ6vVYZ2shKTjZLU6rJOVkHScrFaHdbISko6T1eqwTlajkOaPWy8c/pOQ9tZi9Qnpo5n59y/z\n+28IaWctVpuQ5mdCGleL1SakZ0IaWIs1JKQvLyzUANxmGoRVZ17473GPNK5Wtu79CXvKDpdg\no5WQdrHe9bDqZy4XlpBGtTZoK/9YP+bBL+wyKyHtYhW1l3JxugRDXtjtVkLaxbpWu/BOxukS\njHFhy6xbQ/r5K89saNVu+PLM6RI8fEi3KDnWFpysF7XatzZOl4CQCKleW/TIgNMlICRCKtRW\nPbJ2bK3FyUpIOk7W4oDecLoEhERIEi0F/cbkEjRaCUlneOthQcMf1tRKSDoDWz/fCQ18WGsr\nIekMaj3/hdygh7W3EpLOeNYr3wyNd9gMKyHpjGW98YDCWIfNsRKSzjDWJY/KDXPYMCsh6Qxh\nXfrQ9hCHDbQSks7+1hV/P7T/YTOthKSzr3XlX7ImXoIRrISks6N1/VMV4i7BIFZC0tnJuu35\nPlGXYCArIensYt36rLmgSzCUlZB07m8VnnuacglGsxKSzp2t2jO4Iy7BgFZC0rmnVf45CP9L\nMKaVkHTuZ32w14pzshKSzp2sNT+UZ30JBrYSks5drLy6wthWQtLptxb+hLjrJRjdSkg63dbS\n11nwvATjWwlJp9da/HIljpfAwUpIOp3W8lf98bsEHlZC0umzNrx4ltslcLESkk6XteU16Lwu\ngY+VkHR6rLyUo5WVkHQ6rNMUtne6lZB06q0//94obO90KyHpVFtf//o1bO90KyHpFFtbX6Tb\n4xIYWglJp9T6/hhD2N7pVkLSKbQePFQXtne6lZB06qyHD3mH7Z1uJSSdKus93n9l8EvgayUk\nnRrr6V/Ahu2dbiUknRLrpycyhO2dbiUknQrrvd4RbOBL4G0lJB3deu55dWF7p1sJSUe2nn1+\natje6VZC0lGt55/mHbZ3upWQdDTrfd/sdchLkGAlJB3JevGnjsL2TrcSko5gvfLTe2F7p1sJ\nSWe79dpPwYbtnW4NCsmPx/0/hwYe9R7pxosyhP3BmW4NukcqOdYWtllvvbhJ2N7pVkLS2WS9\n+RpBYXunWwlJZ4v19otthe2dbiUknfXWJa9ZF7Z3upWQdDaE1GJdxCiXIM1KSDprrcteQzVs\n73QrIemstC58LeKwvdOthKSzzrr0Jb3D9k63EpLOKuvi18YP2zvdSkg6a6zL32IibO90KyHp\nrLCueK+WsL3TrYSks9y65i2PwvZOtxKSzmLrqrcOC9s73UpIOkut696CL2zvdCsh6Sy0rnwr\ny7C9062EpLPMuvY9YcP2TrcSks4i6+q3Vg7bO91KSDpLrOvfozxs73QrIekssK7OKG7vdCsh\n6RASVkIq4KZ1/dd1S6zbcPrkdLISks7tkFqs23D65HSyEpLOLeumjtL2TrcSks4N67aO0vZO\ntxKSznXrxo7S9k63EpLOVevWjtL2TrcSks416+aO0vZOtxKSDiFhJaQCrli3d5S2d7qVkHQu\nW4WO0vZOtxKSzkWr0lHa3ulWQtK5ZJU6Sts73UpIOoSElZAKuGDVOkrbO91KSDrnrWJHaXun\nWwlJ56xV7Sht73QrIekQElZCKuCcVe4obe90KyHpnLHqHaXtnW4lJJ3P1oKO0vZOtxKSzidr\nRUdpe6dbCUmHkLASUgGn1pKO0vZOtxKSzom1pqO0vdOthKRDSFgJqYBja1FHaXunWwlJ58ha\n1VHa3ulWQtI5tJZ1lLZ3utUmpPmFg5u/fjMffJCQ9tRidQlpfv/l4APz0b9ScqwtHFjrOkrb\nO93qGtKnsAhpTy1W55COOxohpMKO0vZOt5qG9Prbj2+RvrywRNNM1eMmAOvZHtLxx0r63sK7\ntfIOKe0PznSr8z3Sya2SY23hzVraUdre6VbPkE4fdSCknbVYnUMa7Eu72o7S9k63uod0cN9U\ncqwtvFqLO0rbO93qEtL7MxsOizp6YgMh7ajFahPSbUqOtYVf1uqO0vZOtxKSDiFhJaQCflrL\nO0rbO91KSDqEhJWQCnju6Cht73QrIek8d3SUtne6lZB0njs6Sts73UpIOoSElZAKICSshFRA\nS0dpe6dbCUlmYm+shKRDSFjbtA8U0sTeWNu0hCQTtne6lZBEJvbG2qclJJmwvdOthKQxtVi/\nt1mtDutkJSQNQsLaqX2UkKYW6/c+q9VhnayEJEFIWFu1DxLS1GL93mi1OqyTlZAUCAlrr/Yx\nQpparN87rVaHdbIS0nbenvXN3lgJSYCQsHZrCUkmbO90KyFt5v3n+dgbKyFt5uPnYtkbKyFt\nhpCw9msJSSZs73QrIW3k4BVP2BsrIW2FkLDeQRsf0uFLcLE3VkLaCCFhvYeWkGTC9k63EtIm\njl5clb2xEtImjl+kmL2xEtImCAnrfbSEJBO2d7qVkDZw8vYT7I2VkLZASFjvpI0O6fT9kNgb\nKyFtgJCw3ktLSDJhe6dbCWk1n97pkr2xEtJqPr9jLHtjJaTVEBLW+2n3COk+eJ0WHgive6TP\nd0j8wYm1TZv7pR0hYb2jNjakMx2xN9Y2LSHJhO2dbiWkVZzriL2xtmkJSSZs73QrIa2CkLDe\nVRsa0tmO2Btrm5aQZML2TrcS0grOd8TeWNu0hCQTtne6lZBWQEhY76yNDOlCR+yNtU1LSDJh\ne6dbCWkxlzpib6xtWkKSCds73UpIiyEkrHfXEpJM2N7pVkJaysWO2Btrm5aQZML2TrcS0kIu\nd8TeWNu0cSFd6Yi9sbZpCUkmbO90KyEtg5Cw7qElJJmwvdOthLSIax2xN9Y2LSHJhO2dbiWk\nJVztiL2xtmkJSSZs73QrIS2BkLDuoyUkmbC9062EtIDrHbE31jYtIcmE7Z1uJaTb3OiIvbG2\naQlJJmzvdCsh3YaQsO6lJSSZsL3TrYR0k1sdsTfWNi0hyYTtnW4lpFvc7Ii9sbZpCUkmbO90\nKyHdgpCw7qclJJmwvdOthHSD2x2xN9Y2LSHJhO2dbiWk6yzoiL2xtmkJSSZs73QrIV2HkLDu\nqSUkmbC9062EdJUlHbE31jatEtKPv75O09O3k4/OLxzenk8+Rkh7arGOF9J/8/SL+b+jjt5/\n+fjn0cdaQlrUEXtjbdMKIT1NTy8J/fc0/UlINlqs44U0vf7+x3T08cNo5jMfawlpWUfsjbVN\nK4T0x/Tj9cNPF0N6+xbp42NfXngup+phEIA7cPrp+ufTvz+/tHu6+D3S223ukYbRYh3vHmk6\n4lxIbx8gpGG0WAnpCoSEdWdt+V/I7vGl3cKO2Btrm7Y9pJMHGwhpXy1Wl5Den8Vw+IyG3mc2\nLO2IvbG2aROea0dIWHfXEpJM2N7pVkK6CCFh3V1LSDJhe6dbCekSiztib6xtWkKSCds73UpI\nF1jeEXtjbdMSkkzY3ulWQroAIWEdQEtIMmF7p1sJ6QKEhHUArX1IKzpib6xtWkKSCds73UpI\nZ1nTEXtjbdMSkkzY3ulWQjoLIWEdQktIMmF7p1sJ6SyEhHUIrXlIqzpib6xtWkKSCds73UpI\nZ1jXEXtjbdMSkkzY3ulWQjoDIWEdRGsd0sqO2Btrm5aQZML2TrcS0mcICesoWkKSCds73UpI\nnyEkrKNonUNa2xF7Y23TEpJM2N7pVkI6ZXVH7I21TUtIMmF7p1sJ6RRCwjqOlpBkwvZOtxLS\nKYSEdRwtIcmE7Z1uJaQT1nfE3ljbtIQkE7Z3upWQjtnQEXtjbdMSkkzY3ulWQjqGkLCOpCUk\nmbC9062EdAwhYR1J6xrSlo7YG2ublpBkwvZOtxLSEYSEdSitaUibOmJvrG3aPUIqYKCjAKyE\ne6Q7Wq0O62QNukcqOBYhYR1LS0gyYXunWwnpEELCOpbWM6RtHbE31jYtIcmE7Z1uJaQPNnbE\n3ljbtIQkE7Z3upWQPiAkrKNpHUPa2hF7Y23TEpJM2N7pVkJ6h5CwDqclJJmwvdOthPQOIWEd\nTktIMmF7p1sJ6Y3NHbE31jYtIcmE7Z1uJaQ3CAnreFq/kLZ3xN5Y27SEJBO2d7qVkH5DSFgH\n1BKSTNje6VZC+g0hYR1QS0gyYXunWwnpFaEj9sbapiUkmbC9062E9AohYR1R6xaS0hF7Y23T\nEpJM2N7pVkL6BSFhHVJLSDJhe6dbCekXhIR1SC0hyYTtnW4lpJ9IHbE31jYtIcmE7Z1uJaSf\nEBLWMbVeIWkdsTfWNi0hyYTtnW4lpO+EhHVYLSHJhO2dbiWk74SEdVgtIcmE7Z1uJSS5I/bG\n2qYlJJmwvdOthERIWMfVOoWkdsTeWNu0hCQTtne6lZAICeu4WkKSCds73UpIhIR1XG19SPML\np7fnww8S0o5arC4hze+/HNyej/6VrcciJKzDao1Ckjtib6xt2taQ3j5w3BEh7ajFah3Sx7dI\nX15YojlD1WMdAPuyKaT588e29a3fIfEHJ9Y2bfs90vzpBiHtqMVqGtK5W9uORUhYB9Y2hzSf\ni2vTsQo6Ym+sbdrekA4eBj/4am/TsQgJ68javmc2vD1aNx98jJD21mK1Cek2m45FSFhH1hLS\noFarwzpZCUmHvbES0ob/udvWCsL2Trc+eEgVHbE31jYtIQ1qtTqsk5WQdNgb64OHVNIRe2Nt\n0xLSoFarwzpZCUmHvbESUgHsjZWQCmBvrIRUAHtjJaQC2BvrY4dU0xF7Y23TEtKgVqvDOlkJ\nSYe9sT50SEUdsTfWNi0hDWq1OqyTlZB02BsrIRXA3lgJqQD2xkpIBbA3VkIqgL2xPnJIVR2x\nN9Y2LSENarU6rJOVkHTYGyshFcDeWB84pLKO2Btrm5aQBrVaHdbJSkg67I2VkApgb6yEVAB7\nYyWkAtgbKyEVwN5YHzekuo7YG2ublpAGtVod1slKSDrsjZWQCmBvrA8bUmFH7I21TUtIg1qt\nDutkJSQd9sZKSAWwN9ZHDamyI/bG2qYlpEGtVod1shKSDntjJaQC2BtrUkhr2OO/CdAK90h3\ntFod1skadI+05liEhNVCO3hIpR2xN9Y2LSENarU6rJOVkHTYGyshFcDeWB8zpNqO2Btrm5aQ\nBrVaHdbJSkg67I2VkApgb6yEVAB7YyWkAtgbKyEVwN5YCakA9sb6kCEVd8TeWNu0hDSo1eqw\nTlZC0mFvrIRUAHtjfcSQqjtib6xtWkIa1Gp1WCcrIemwN1ZCKoC9sRJSAeyNlZAKYG+shFQA\ne2MlpALYG+sDhlTeEXtjbdMS0qBWq8M6WQlJh72xElIB7I318UKq74i9sbZpCWlQq9VhnayE\npMPeWAmpAPbGSkgFsDdWQiqAvbESUgHsjZWQCmBvrA8XUkNH7I21TUtIg1qtDutkJSQd9sZK\nSAWwN1ZCKoC9sT5aSB0dsTfWNi0hDWq1OqyTlZB02BsrIRXA3lgJqQD2xkpIBbA3Vp+Q5hdO\nbx9+jJD21GJ1CWl+/+Xj9uHHCGlXLdbHCqmlI/bG2qYlpEGtVod1soaE9OWFJRqAWO75PZL+\nR4S51eqwTtaQeyRC2leLlZB0nKxWh3WyEpKOk9XqsE5WQtJxslod1snqEtLHsxkOb69+ZoP+\nf2ZutTqsk9UmpNuUHGsLTlarwzpZCUnHyWp1WCcrIek4Wa0O62QlJB0nq9VhnayEpONktTqs\nk5WQdJysVod1shKSjpPV6rBOVkLScbJaHdbJSkg6TlarwzpZCUnHyWp1WCcrIek4Wa0O62Ql\nJB0nq9VhnayEpONktTqsk5WQdJysVod1shKSjpPV6rBO1qCQFuD0SkNOZ7U6rNNZVx2WkM7i\ndFarwzqdlZB0nM5qdVinsxKSjtNZrQ7rdFZC0nE6q9Vhnc46akgAuRASQAGEBFAAIQEUQEgA\nBdwhpHNvQDsqp2cd/rDzwe1dD3Od+fSsAx/29WhrP2v7Qzr3wuGjcnS+gc/5ynxyc/QDe1zY\njxfnXvVZS0iHEFIj86cbIzI/E1IR89E/xmU+vT34iV3+gCKkIt7OOvZX8iffIr3/Miw233sS\nUg02n5tmF/b4K7uBz0pINcwXfzMiPhd2vvK7oSCkEmz2fsXmws5XfzsShFTBfHxr5LNyYXsg\npAJOHlEe+ahHBxz+wp6ENPJRRw3p7BvQDsr7X8AbnNXqwh59Ug5+1tezrb24PNcOoABCAiiA\nkAAKICSAAggJoABCAiiAkAAKICSAAggJoABCAiiAkAAKICSAAggJoABC8uaP6d/n53+np73P\n8fAQkjc/pq/Pz08/a4JdISRzvk3//D39tfcpgJDcGfzH5B4FQnLn72n6e+8zACHZQ0hDQEju\nzF+/8qXd/hCSOd+mf/6Zvu19CiAkb349/P11+rH3OR4eQvLm91/I/rH3OR4eQgIogJAACiAk\ngAIICaAAQgIogJAACiAkgAIICaAAQgIo4H/Fq8I/3uFpwQAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ggplot(data.frame(x=seq(0,10,0.01)) %>% mutate(p=pexp(x, 1))) +\n", " aes(x=x, y=p) +\n", " geom_line()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And its PDF:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": {}, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAIcCAMAAAD7UX68AAAALVBMVEUAAAAzMzNNTU1oaGh8\nfHyMjIynp6eysrLHx8fQ0NDh4eHp6enr6+vw8PD///9J02bAAAAACXBIWXMAABJ0AAASdAHe\nZh94AAAUPklEQVR4nO2d0XbbVhIEYdheJ7HN///cNSWZBCkQGGAueHua1Q+OrJNTW4tRmZJW\nmwwnxlh6Q28BxhxGSIw1GCEx1mCExFiDERJjDUZIjDUYITHWYITEWIM1CenX+iJ/z/YdQ62F\nRbYjlpB8sMgSUnpud9GhIhvCEpIPFllCSs/tLjpUZENYQvLBIktI6bndRYeKbAhLSD5YZAkp\nPbe76FCRDWEJyQeLLCGl53YXHSqyISwh+WCRJaT03O6iQ0U2hCUkHyyyhJSe2110qMiGsITk\ng0WWkNJzu4sOFdkQdmNI4/WtP5v+lZC6Y5EtE9K1mfHjl/HyG0LqjUW2SkjjiZCEschWCelE\nSMpYZC1C+nJeAME/rYhZ71mvSEP+z4e5PxAOodbCImvxikRIvbHIElJ6bnfRoSIbwhKSDxZZ\nQkrP7S46VGRD2F0hnX/d/ZMNhMTH5mHUMiGtLeBESHxsHkZ9pZBOh5TkdhcdKrIhLCH5YJEl\npPTc7qJDRTaEJSQfLLKvFdIh325wu4sOFdkQlpB8sMgSUnpud9GhIhvCEpIPFllCSs/tLjpU\nZENYQvLBIktI6bndRYeKbAhLSD5YZF8spCNKcruLDhXZEJaQfLDIElJ6bnfRoSIbwhKSDxZZ\nQkrP7S46VGRD2C4hHVCS2110qMiGsITkg0WWkNJzu4sOFdkQlpB8sMgSUnpud9GhIhvCEpIP\nFllCSs/tLjpUZENYQvLBIvtyIbUvye0uOlRkQ1hC8sEiS0jpud1Fh4psCEtIPlhkXy+k5iW5\n3UWHimwIS0g+WGQJKT23u+hQkQ1hCckHi+wLhtS6JLe76FCRDWEJyQeLLCGl53YXHSqyISwh\n+WCRJaT03O6iQ0U2hCUkHyyyhJSe2110qMiGsITkg0X2FUNqXJLbXXSoyIawhOSDRZaQ0nO7\niw4V2RC2X0htS3K7iw4V2RCWkHywyBJSem530aEiG8I2DmnLnv4fyNgTxitSdSyyPq9IW5wI\nqQQV2RCWkHywyBJSem530aEiG8J2DKlpSW530aEiG8ISkg8WWUJKz+0uOlRkQ1hC8sEi+6Ih\ntSzJ7S46VGRDWELywSJLSOm53UWHimwIS0g+WGQJKT23u+hQkQ1hCckHiywhped2Fx0qsiFs\n15AaluR2Fx0qsiEsIflgkSWk9NzuokNFNoQlJB8ssi8bUruS3O6iQ0U2hCUkHyyyhJSe2110\nqMiGsITkg0WWkNJzu4sOFdkQlpB8sMgSUnpud9GhIhvCdg6pWUlud9GhIhvCEpIPFllCSs/t\nLjpUZEPY3iG1KsntLjpUZENYQvLBIktI6bndRYeKbAhLSD5YZF85pEYlud1Fh4psCEtIPlhk\nCSk9t7voUJENYQnJB4ssIaXndhcdKrIhLCH5YJElpPTc7qJDRTaE7R9Sm5Lc7qJDRTaEJSQf\nLLKElJ7bXXSoyIawAiE1KcntLjpUZENYQvLBIktI6bndRYeKbAhLSD5YZAkpPbe76FCRDWEJ\nyQeLbJWQxj+bvPn2m3HyTkLqikW2SEjj5ZfJO8abv2WfU4OS3O6iQ0U2hM2E9CksQuqKRbZw\nSLcdEVJPLLI1Q3r/7eVLpC/nrTLm1+QbHYwpbGdIt+/bGXf+JcntDzgdKrIhbDaku7d2OhGS\nLhXZEHZ/SPffdSCk3lhkC4fEp3Y6WGSLhzR5bdrpREi6VGRD2C0hXX6yYVrUzQ827A0pX5Lb\nXXSoyIawm0Ja314nQpKlIhvCEpIPFllCSpfkdhcdKrIhLCH5YJElJEKSpSIbwhKSDxZZQkqX\n5HYXHSqyISwh+WCRJSRCkqUiG8ISkg8WWUIiJFkqsiEsIflgkSWkX9mS3O6iQ0U2hCUkHyyy\nhPSLkFSpyIawOiHlSnK7iw4V2RCWkHywyBLSeYQkSUU2hCUkHyyyhHQeIUlSkQ1hCckHiywh\nvS1TkttddKjIhrCE5INFlpDeRkiKVGRDWKWQMiW53UWHimwIS0g+WGQJ6X2EJEhFNoQlJB8s\nsoT0PkISpCIbwhKSDxZZQvrY/pLc7qJDRTaEJSQfLLKE9DFC0qMiG8JqhbS/JLe76FCRDWEJ\nyQeLLCH9HSHJUZENYQnJB4ssIf0dIclRkQ1hxULaXZLbXXSoyIawhOSDRZaQLiMkNSqyIaxa\nSHtLcruLDhXZEJaQfLDIEtJ1hCRGRTaElQtpZ0lud9GhIhvCEpIPFllCmoyQtKjIhrCNQ2ow\nFQ/Gdo1XpOpYZH1ekVo47SrJ7S46VGRDWELywSJLSNMRkhQV2RBWMKRdJbndRYeKbAhLSD5Y\nZAnpZoSkREU2hCUkHyyyhHQzQlKiIhvCEpIPFllCut2OktzuokNFNoQlJB8ssoR0t+0lud1F\nh4psCEtIPlhkCeluhKRDRTaEJSQfLLKEdDdC0qEiG8JqhrS9JLe76FCRDWEJyQeLLCHdj5Bk\nqMiGsKIhbS7J7S46VGRDWELywSJLSJ9GSCpUZENYQvLBIktIn0ZIKlRkQ1jVkLaW5HYXHSqy\nISwh+WCRJaSZbSvJ7S46VGRDWELywSJLSDMjJA0qsiGsbkjbSnK7iw4V2RCWkHywyBLS3AhJ\ngopsCEtIPlhkCWluhCRBRTaEFQ5pU0lud9GhIhvCEpIPFllCmt+GktzuokNFNoQlJB8ssoQ0\nP0ISoCIbwhKSDxZZQpofIQlQkQ1hpUPaUJLbXXSoyIawhOSDRZaQHi1ckttddKjIhrCE5INF\nlpAejZC6U5ENYQnJB4ssIT0aIXWnIhvCiocULsntLjpUZEPY+ZCG6a7vHv9s+vZ49z5C6opF\ntkhI4+WX619v3ndASNGS3O6iQ0U2hJ0P6bzv336eTj+/fZ+8IBGSNBZZxZC+D7/f330taRrN\nOPM+QuqLRVYxpI9P6X4/+NTu8iXS5X1fzjs1X5PvgTD2tN19xH4b3j+1W3pFGp/wihR8SXL7\nA06HimwI+zCkn+P7txrGn7Mh/X0HIelgkVUM6fT7f1+H4euP3zfddAgpVpLbXXSoyIawj0P6\nvD6f2hFSXyqyIWwmpPH0lJBCJbndRYeKbAi7JaTLTzFMf6Lh4J9sOI+QelKRDWE3hbS+Jk73\nI6SeVGRDWELywSJLSIsjpJ5UZEPYCiFFSnK7iw4V2RCWkHywyBLSytZLcruLDhXZEJaQfLDI\nEtLKCKkfFdkQlpB8sMgS0tpWS3K7iw4V2RCWkHywyBLS6tZKcruLDhXZEJaQfLDIEtLqCKkX\nFdkQlpB8sMgS0vpWSnK7iw4V2RCWkHywyBJSYMslud1Fh4psCEtIPlhkCSkwQupDRTaEJSQf\nLLKEFNliSW530aEiG8IS0uJKYZElpNCWSnK7iw4V2RC2UkhLJbndRYeKbAhLSIsrhUWWkGIj\npA5UZENYQlpcKSyyhBTc45Lc7qJDRTaEJaTFlcIiS0jRPSzJ7S46VGRDWEJaXCkssoQUHSE9\nnYpsCFsspIclud1Fh4psCEtIiyuFRZaQ4ntQkttddKjIhrCEtLhSWGQJKT5CejIV2RCWkBZX\nCossIW3YfElud9GhIhvC1gtpviS3u+hQkQ1hCWlxpbDIEtKWEdJTqciGsIS0uFJYZAlp0+ZK\ncruLDhXZELZiSHMlud1Fh4psCEtIiyuFRdYnpCetkit7sRV6RZp5SXL7A06HimwIS0iLK4VF\nlpC27lNJbnfRoSIbwhLS4kphkSWkzbsvye0uOlRkQ1hCWlwpLLKEtHmE9CwqsiFs1ZDuS3K7\niw4V2RCWkBZXCossIe3YbUlud9GhIhvCEtLiSmGRJaQdI6TnUJENYeuGdFuS2110qMiGsIVD\nuinJ7S46VGRDWEJaXCkssoS0a4T0DCqyIWzlkKYlud1Fh4psCEtIiyuFRZaQdu5akttddKjI\nhrC1Q7qW5HYXHSqyISwhLa4UFllC2jtCOpyKbAhbPKRLSW530aEiG8JWD+lvSW530aEiG8IS\n0uJKYZElpP0jpIOpyIaw5UP6KMntLjpUZEPY+iG9l+R2Fx0qsiEsIS2uFBZZQsqMkA6lIhvC\nGoT0VpLbXXSoyIawDiGdS3K7iw4V2RCWkBZXCossISU32N1Fh4psCEtIiyuFRZaQshvc7qJD\nRTaENQlp7l903mKlzo0sIaVHSMh2xRLS4kqdG1lCSu90TEmlzo0sIaV3OuY1qdS5kSWk9AgJ\n2a5YQlrBHjI+NmvJvlRIh5RU6tzIElJ6Z+oBJZU6N7KElB4hIdsV6xTSASWVOjeyhJTeO7V5\nSaXOjSwhpfdBbV1SqXMjS0jpERKyXbGbQhr/7P7tcfpOQuqJRbZISOPll8nb483f0sRpz/5S\nG5dU6tzIElJ6F2rbkkqdG9mCIf19x21HhNQTi2zlkC5fIn05b5Vx/Jp804Sxvdse0vj5fU3i\n3rMJteVrUqk/N5Et+oo0fnqDkHpika0Z0txbTZz2bEptWFKpcyNbMqRxLq4mTnt2Q21XUqlz\nI1sxpMm3wSef7TVx2jNCQrYrdktI159m+Phu3Th5n1JI7UoqdW5kq4S0viZOe3ZHbVVSqXMj\nS0jp3VMblVTq3MgSUnqEhGxXrGtIjUoqdW5kCSm9z9QmJZU6N7KElB4hIdsV6xtSk5JKnRtZ\nQkpvjtqgpFLnRpaQ0iMkZLtinUNqUFKpcyNLSOnNU9MllTo3soSUHiEh2xXrHVK6pFLnRpaQ\n0ntEHXIplTo3soSU3kMqIWliS8kS0q9kSaXOjSwhpbdAzZRU6tzIElJ6hIRsV+wLhJQpqdS5\nkSWk9Bap+0sqdW5kCSm9ZerukkqdG1lCSm+FurekUudGlpDSIyRku2JfJKS9P+FQ6tzIElJ6\n69RdJZU6N7KElB4hIdsV+zoh7frsrtS5kSWk9CJUQhLClpIlpNttL6nUuZElpPRi1M0llTo3\nsoSUXpC6taRS50aWkNKLUjeWVOrcyBJSeuGQtpVU6tzIElJ6ceqmkkqdG1lCSm8DdUtJpc6N\nLCGlt4W6oaRS50aWkNLbRI2XVOrcyBJSetuo4ZJKnRtZQkpvIzVaUqlzI0tI6W2lBr8NXurc\nyBJSepuphNQXW0qWkBYWek0qdW5kCSm9PdRASaXOjSwhpbeLul5SqXMjS0jp7aOullTq3MgS\nUno7qWtfKJU6N7KElN5e6kpJpc6NrE9IBfeq/73ZQXvNV6Rfy18olfpzE1mfV6QmTnuWoS58\nelfq3MgSUnop6uOSSp0bWUJKL0l9VFKpcyNLSOllqQ9elEqdG1lCSi9NnS+p1LmRJaT0GlDn\nUip1bmQJKb0W1OFzSqXOjSwhpdeG+qmkUudGlpDSa0W9K6nUuZElpPSaUW9flEqdG1lCSq8d\n9eYrpVLnRpaQ0mtKvZZU6tzIElJ6bamXF6VS50aWkNJrTf1IqdS5kSWk9JpT379UKnVuZAkp\nvQOo55JKnRtZQkrvEOowlDo3soSU3kEPcOO/4C+6Us8AWUJqgD0kpWLPoA6VkLI78AEekFK5\nZ1CFSkjZHfoAZ34svAW29Up9bJaSJaRW2MYplXwGFaiElN3hD7BpSkWfgT6VkLJ7xgNsl1Ld\nZyBOJaTsnvMAW70sVX4G0lRCyu5pD7BJSsWfgS6VkLJ74gNs8LJU/hmoUgkpu+c+wGxLDs9A\nkkpI2T39AaZaMnkGelRCyq7DA0ykZPMM1KiElF2fBzjsjMnpGUhRCSm7fnfZ05LbM5ChElJ2\nXe+yuSXDZ6BBJaTset9l2yd5ns9AgEpI2SncJR6T7zPoTCWk7ETuMsRisn4GPamElJ3SXdZj\n8n8GnaiElJ3aXZZfml7jGXSgElJ2knd5WNMLPYPnUgkpO9m7DHM1vdgzeB6VkLLTvst9Ta/4\nDJ5CJaTsKtzlmtPrPoODqYSUXZ27DLOf7LVYnWdwGJWQsit3l6F9UKWeQSlZQtLHNgyq1DMo\nJUtIdbBDvqhSz6CULCEVxA7D3qZKPYNSsoRUGzvcrBV16zhY85DGP7t/e/o+QjoQO9yvCTUw\nDtY6pPHyy/Xt6fsI6anYT2WV+q668pPdgyUkH+yZOltXrjMORkivhQ1QVzprGmBathS2XUhf\nzltlsJLbG6DLNj2r1b+DVyRtLLIWr0iE1BuLLCGl53YXHSqyISwh+WCRJaT03O6iQ0U2hN0S\n0vWnGaZv85MNKlhkq4S0viZOe+Z2Fx0qsiEsIflgkSWk9NzuokNFNoQlJB8ssoSUnttddKjI\nhrCE5INFlpDSc7uLDhXZEJaQfLDIElJ6bnfRoSIbwhKSDxZZQkrP7S46VGRDWELywSJLSOm5\n3UWHimwIS0g+WGQJKT23u+hQkQ1hG4cUWKl/0hCyR62U7CZbQpoZsketlCwhZYfsUSslS0jZ\nIXvUSskSUnbIHrVSspIhMWY9QmKswQiJsQYjJMYajJAYa7CjQ5r7F9DK7l5W2nYqWMJ1Kqts\n++629QP34JDm/sHhsrsRVBZ923j3ZhlhcdHrP5970wcuIV1HSEdu/PSG5MYTITXZePMX3Y33\nb6sb1/oTipCy+ysr/on87ZdIl190V+iLz9tfCGnXynxsVnuyt5/ZKcsSUouND3+juEJPdlz4\nndYIqcHqnPttdZ7suPhbqRFSfuPtW8qyPNmjRkjp3X1HWd61zBd09yFJu0qGNPsvoFXd5X9/\nryBb6snefEyqy77LbX28/KwdYw1GSIw1GCEx1mCExFiDERJjDUZIjDUYITHWYITEWIMREmMN\nRkiMNRghMdZghMRYgxESYw1GSJX3ffjvdPpv+NbbgxFS6f0evp5O3841sc4jpNL7Mfz7z/C/\n3haMkKpP/f8l9zIjpNr7Zxj+6e3AToRUfYQkMkKqvfHrVz61Uxghld6P4d9/hx+9LRgh1d7b\nt7+/Dr97ezBCKr2P/0H2e28PRkiMtRghMdZghMRYgxESYw1GSIw1GCEx1mCExFiDERJjDUZI\njDXY/wEjktCv2VCwKwAAAABJRU5ErkJggg==", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ggplot(data.frame(x=seq(0,10,0.01)) %>% mutate(d=dexp(x, 1))) +\n", " aes(x=x, y=d) +\n", " geom_line()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.4.1" } }, "nbformat": 4, "nbformat_minor": 2 }